
Agentes Antioxidantes na Estabilidade de filmes finos de MEH-PPV

Luiz Brito de Souza Filho Ézio Raul Alves de Sá

Apresentação

- 1 Introdução
- 2 Parte Experimental
 - 2.1 Materiais e Métodos
 - 2.2 Caracterização
 - 2.2.1 Cinética de Fotodegradação
- 3 Resultados e Discussões
- 4 Conclusões
- 5 Perspectivas

1 - Introdução

Compostos Orgânicos

Macromoléculas

Adição ou Condensação de monômeros

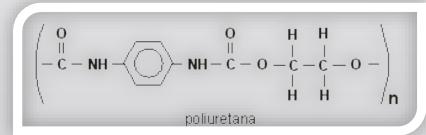
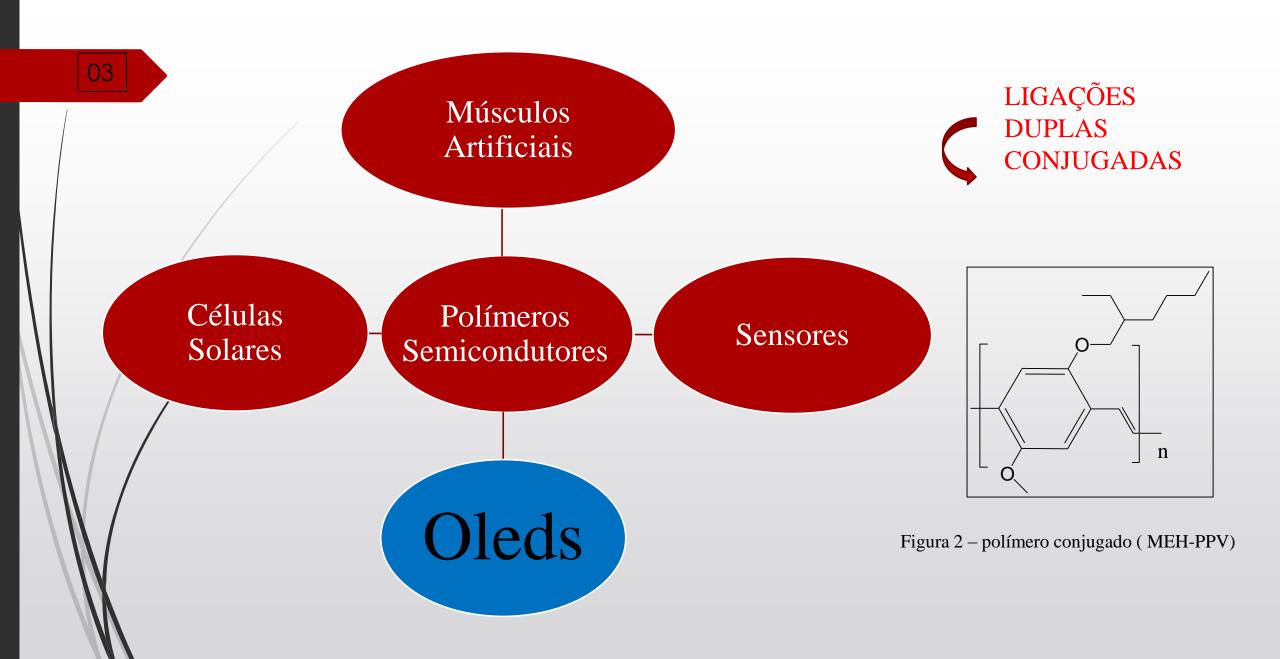
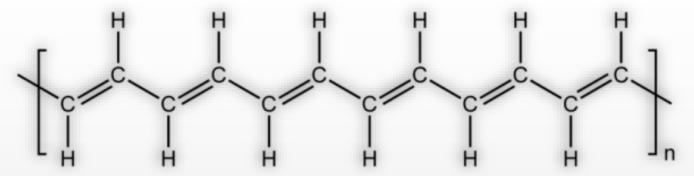
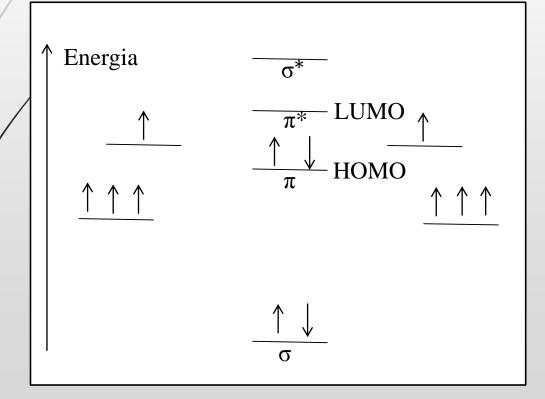
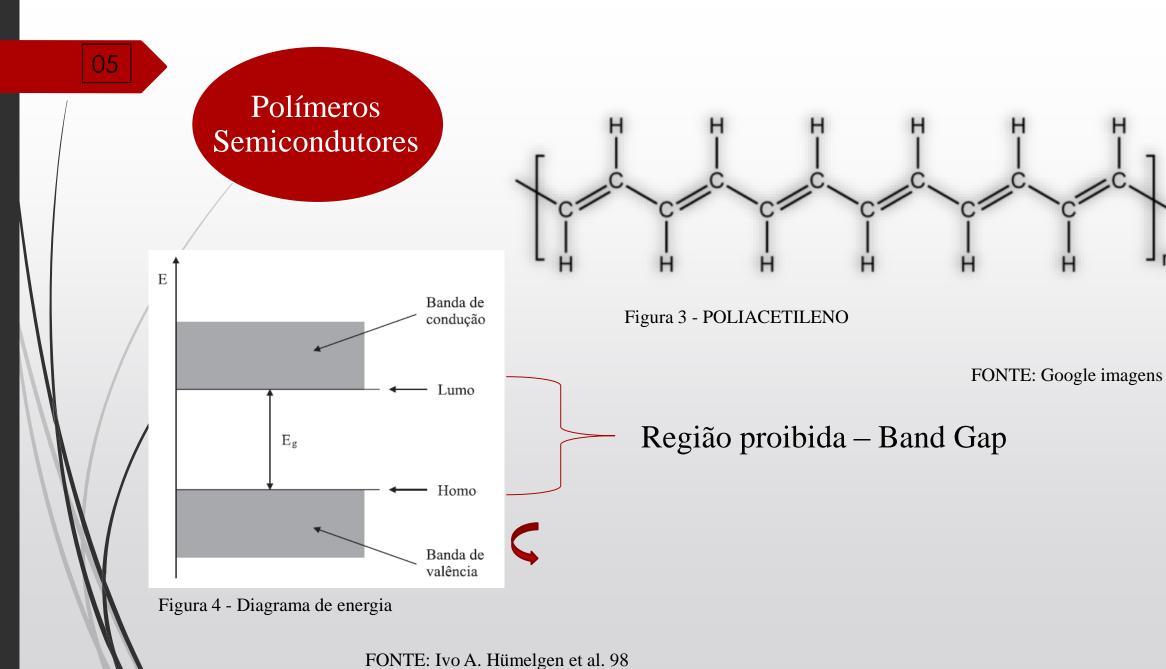




Figura 1- copolímero

FONTE: Google imagens

Polímeros Semicondutores




Figura 3 - POLIACETILENO

FONTE: Google imagens

Apresentam as bandas π originadas da hibridização dos orbitais atômicos resultando no caráter metálico ou semicondutor ao polímero

HOMO – Orbital ocupado de mais alta energia

LUMO – Orbital desocupado de mais baixa energia

Mecanismo de transporte de cargas

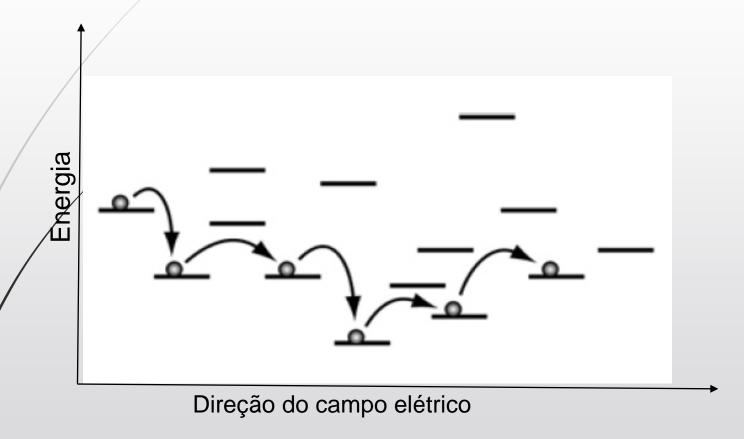
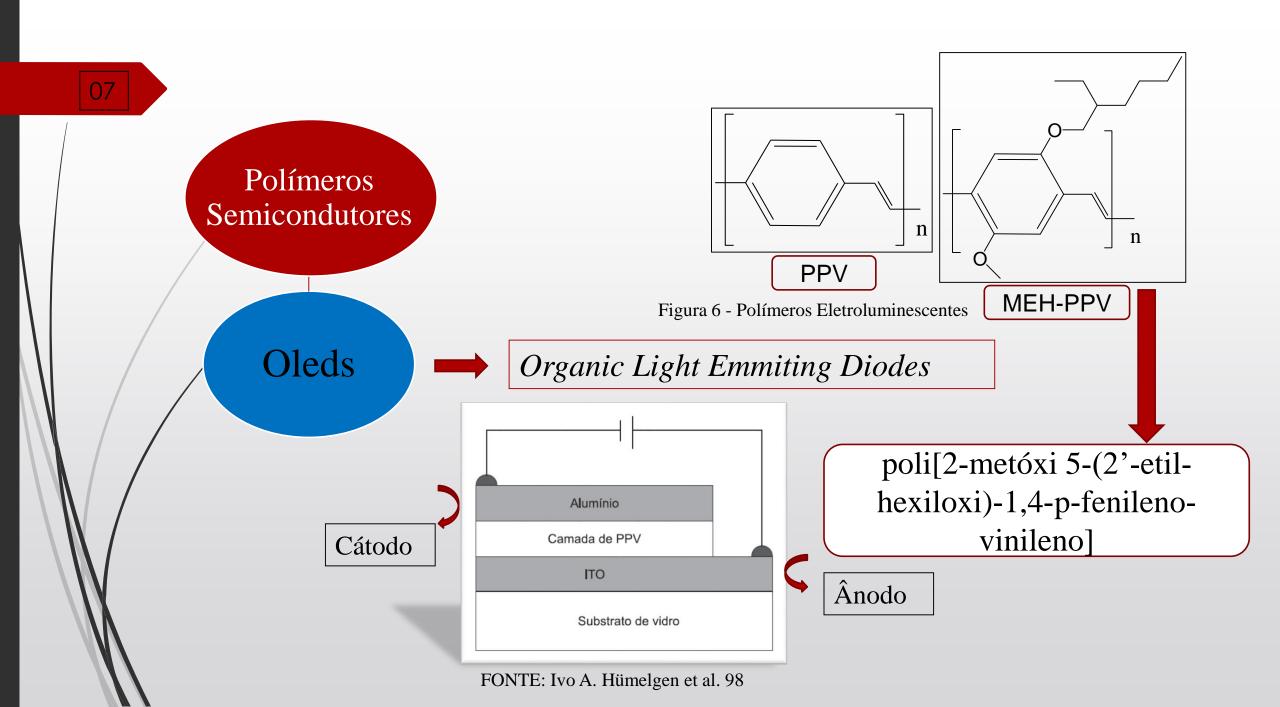
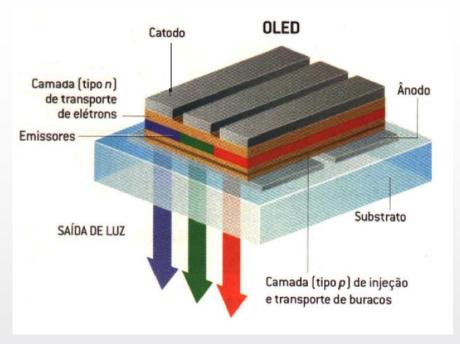



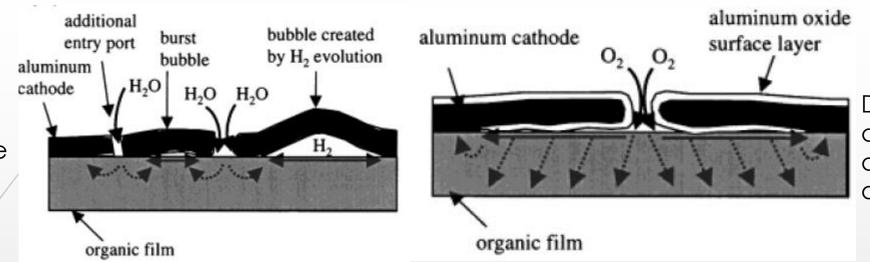
Figura 5 – Mecanismo de transporte por "Hopping"

FONTE: Adaptada de Wang (2010)

Vantagens

Processamento fácil, baixo custo na produção, são leves, flexíveis, as camadas são mais finas, mais brilhantes, consumo menor de energia que os dispositivos inorgânicos.




Figura 7 - Arquitetura do dispositivo

FONTE: Google imagens

Problemas

 Degradação acelerada quando em funcionamento elétrico ou em contato com oxigênio e/ou umidade. formação de bolhas pela redução da água

Deslaminação do cátodo por ação do oxigênio

Figura 8 - Fatores externos da degradação durante o funcionamento

FONTE: Schaer et al, 2001

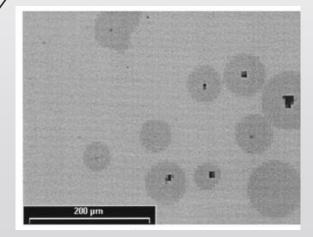


Figura 9 - Formação dos darks spots

FONTE: Ke et al, 2002

Alguns fatores internos da degradação (luz e oxigênio)

- ✓ perda de conjugação do polímero;
- ✓ formação de armadilhas, cargas espaciais acúmulo de centro de recombinação não radiativa

PESQUISAS

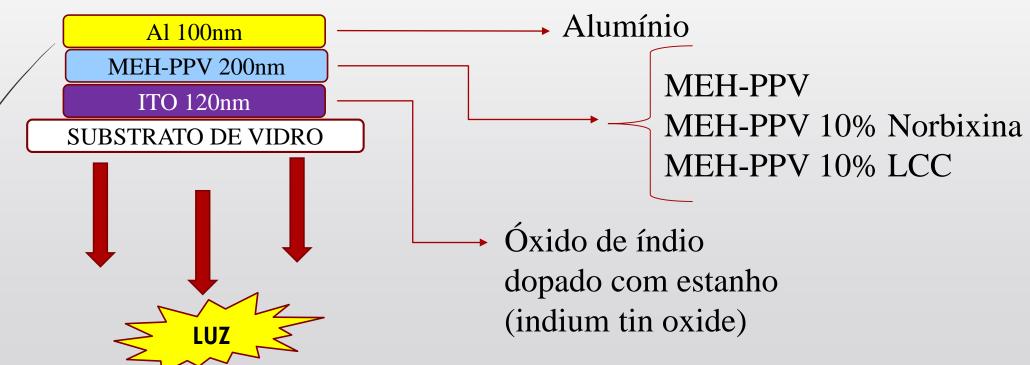
MELHORAR O DESEMPENHO

- ✓ Dispositivos multicamadas camadas injetoras e transportadoras de buracos, camada injetora e transportadora de elétrons (Nowy et al, 2010);
- ✓ Aditivos grafeno, nanopartículas de ouro, íons(Scholz et al, 2015)

CONTROLE DA DEGRADAÇÃO

- ✓ Confecção do dispositivo (Glove box);
- ✓ Encapsulamento (Gover et al, 2011);
- ✓ Uso de aditivo natural (LCC) com potencial antioxidante no controle da fotoxidação da camada ativa (Ibiapina, 2010; Soares, 2013)

- ✓ Este trabalho teve como foco estudar as principais características e avaliar a eficácia dos antioxidantes naturais utilizados como aditivo na camada ativa de MEH-PPV;
- ✓ Avaliar o potencial antioxidante de aditivos naturais como o LCC (líquido da castanha de caju) e Norbixina (extraída da semente do urucum) a partir da fotodegradação dos filmes e da camada ativa dos dispositivos;


2 – Parte Experimental

2.1- Materiais e Métodos

Figura 10 - Amostra e 4 dispositivos

Deposição dos filmes

As soluções serão depositadas por Spin-coating.

Deposição dos contatos

O cátodo foi evaporado numa metalizadora.

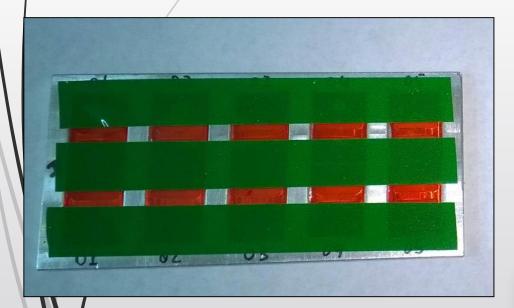


Figura 15 - máscara para metalização

Evaporação do alumínio (Al)

FONTE: elaborado pelo autor

Figura 16 - Metalizadora Edwards

15

2.2.1 - Cinética de fotodegradação

3 - Resultados e Discussões

Espectros de absorção dos filmes de MEH-PPV puro e MEH-PPV com os aditivos antioxidantes LCC e Norbixina.

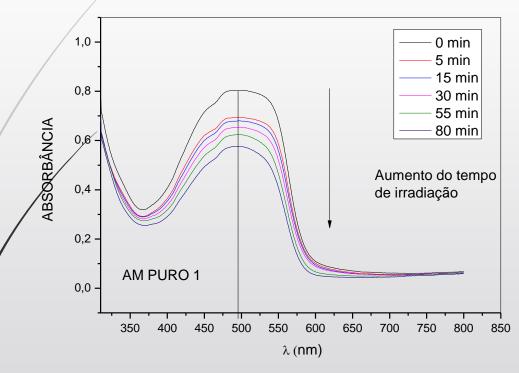


Figura 18 - Espectro de absorção MEH-PPV com o tempo de Irradiação de luz UV

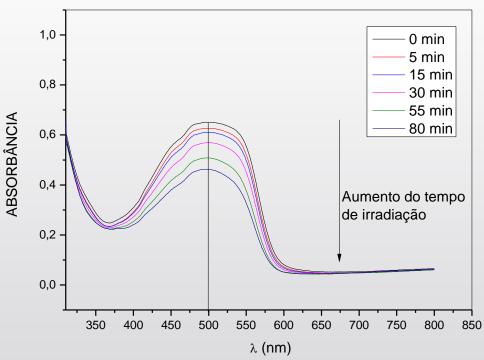


Figura 19 - Espectro de absorção MEH-PPV 10% de LCC com o tempo de Irradiação de luz UV

3 - Resultados e Discussões

Espectros de absorção dos filmes de MEH-PPV puro e MEH-PPV com os aditivos antioxidantes LCC e Norbixina.

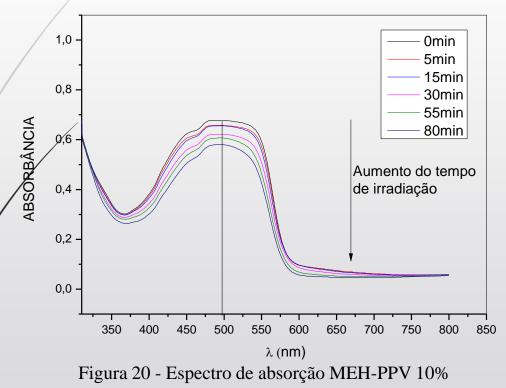


Figura 20 - Espectro de absorção MEH-PPV 10% de Norbixina com o tempo de Irradiação de luz UV

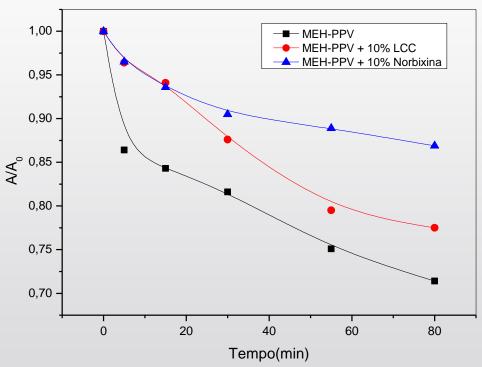


Figura 21 - Taxa de fotodegradação normalizada em função do tempo

3 - Resultados e Discussões

Espectros de absorção dos filmes de MEH-PPV puro e MEH-PPV com os aditivos antioxidantes LCC e Norbixina.

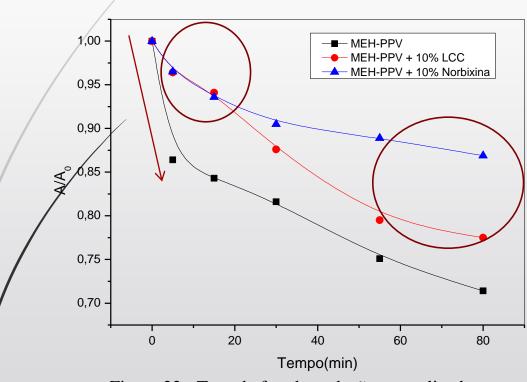


Figura 22 - Taxa de fotodegradação normalizada em função do tempo

MEH-PPV – decréscimo da absorção máxima nos primeiros 5 min, atingindo cerca de 30%. Com taxa contínua de degradação

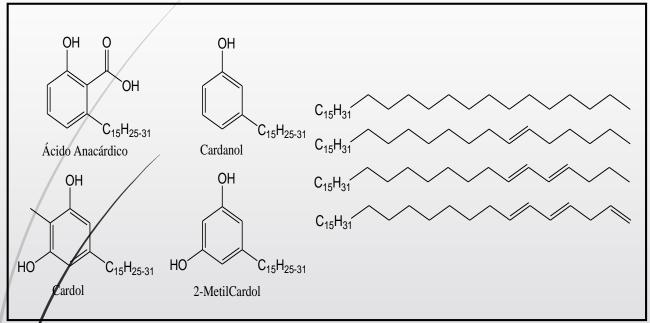
Nos 15 min iniciais filmes de MEH-PPV com os antioxidantes comportamento semelhante frente a degradação. Tendendo a uma estabilidade mesmo após 80 min.

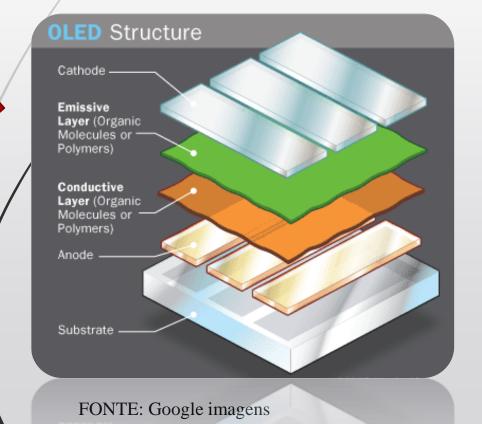
4 - Conclusões

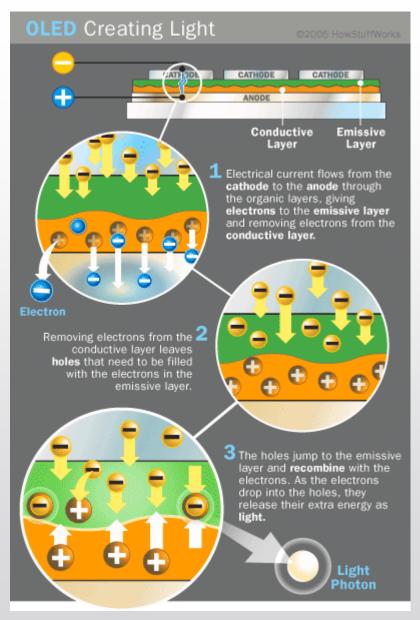
- ✓ Através da análise do UV-Vis, foi observado que os filmes de MEH-PPV com 10% de Norbixina, apresentaram melhor estabilidade a radiação luminosa mostrando-se como um excelente aditivo natural com potencial antioxidante. Muito embora o LCC tenha apresentado estabilidade inferior frente ao carotenoide, faz jus seu uso como antioxidante por ser originado de um recurso renovável e abundante.
 - As diferenças observadas no comportamentos dos filmes e dispositivos com antioxidantes deve-se a diferentes mecanismos de ação frente ao processo de degradação, visto que o LCC é fenólico e a Norbixina é um carotenoide;

5 – Perpectivas

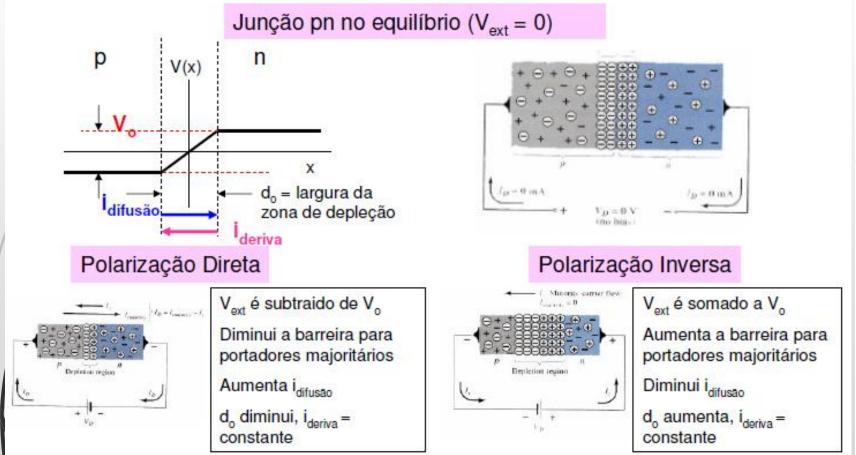
- ✓ Confeccionar filmes e dispositivos de norbixina;
- ✓ Avaliar a morfologia dos dispositivos por AFM;
- ✓ Determinar a espessura dos filmes através do Perfilômetro, com o estudo do comportamento elétricos por outros parâmetros;
- ✓ Acompanhar a fotodegradação dos filmes e dispositivos por Espectroscopia no IR, Raman e por Luminescência;
- ✓ Avaliar por medidas de capacitância *versus* tensão as possíveis armadilhas apresentadas no volume do material durante o funcionamento.

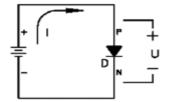

OBRIGADO luiz.filho@ifto.edu.br




Agentes Antioxidantes na Estabilidade de filmes finos de MEH-PPV

Luiz Brito de Souza Filho Ézio Raul Alves de Sá


Oleds



FONTE: Google imagens

Análise dos circuitos com as duas polarizações:

Supondo uma bateria sobre os terminais do diodo, há uma polarização direta se o pólo positivo (+) da bateria for colocado em contato com o material tipo *p* e o pólo negativo (-) em contato com o material tipo *n*.

Invertendo-se as conexões entre a bateria e a junção *pn*, isto é, ligando o pólo positivo (+) no material tipo *n* e o pólo negativo (-) no material tipo *p*, dizemos que a junção está com **polarização** inversa (reversa).

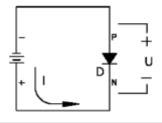


Tabela 1 — Parâmetros obtidos a partir dos ajustes das componentes $\mathbf{Re}(\mathbf{Z'})$ e $\mathbf{Im}(\mathbf{Z''})$ apresentadas na Figura a1 e a2 através da Equação 4 para a amostra ITO / MEH-PPV / AI em função do Tempo de exposição a luz UV.

Tabela 2 – Parâmetros obtidos a partir dos ajustes das componentes **Re(Z') e Im(Z'')** apresentadas na figura b1 e b2 através da Equação 4 para a amostra ITO / MEH-PPV + 10% Norbixia / Al em função do Tempo de exposição a luz UV.

Tempo de luz (min)	R ₁ (MΩ)	C ₁ (nF)	a	R ₂
0	8,36	2,60	0,00816	38
5	32,9	2,69	0,00764	38
20	39,4	2,72	0,00816	38
40	48,7	2,83	0,00816	38
70	51,9	2,88	0,00816	38
130	55,3	2,92	0,00816	38
250	59,2	2,89	0,00816	38
370	54,5	2,77	0,00816	38

Tempo de luz (min) $R_1(k\Omega)$		C ₁ (nF)	а	R ₂	
0	1,82	3,09	0,00186	34	
5	3,84	3,10	0,00186	34	
20	9,15	3,12	0,00186	34	
40	14,8	3,13	0,00186	34	
70	16,7	3,13	0,00186	34	
130	24,2	3,16	0,00186	34	
250	23,3	3,19	0,00186	34	
370	24,6	3,20	0,00186	34	

Tabela 3 – Parâmetros obtidos a partir dos ajustes das componentes **Re(Z')** e **Im(Z'')** apresentadas na figura c1 e c2 para a amostra ITO / MEH-PPV + 10% LCC/ Al em função do Tempo de exposição a luz UV.

	Tempo de luz	R ₁ (MΩ)	C ₁ (nF)	a ₁	$R_2(\Omega)$	C ₂ (nF)	$a_{\scriptscriptstyle 2}$	R ₃ (Ω)
	0	0,19	1,90	0,005	10	1	0,019	34,8
	5	5,20	1,92	0,005	10	1	0,019	35,0
	20	6,80	1,92	0,005	10	1	0,019	35,1
	40	9,30	1,94	0,005	10	1	0,019	35,2
	70	10,0	2,88	0,016	2,15 x 10 ⁵	7,14	0	42,8
	130	10,3	3,22	0,030	2,25 x 10 ⁵	7,49	0	43,0
	250	11,5	3,98	0,030	2,35 x 10 ⁵	7,56	0	43,0
1	370	10,4	2,82	0,014	2,17 x 10 ⁵	7,16	0	43,0

6 - Referências

Attanasi, O. A., Burati, S., Filippone, P. (1996). *Enzymatic Synthesis and Curing of Poly(cardanol)*. Science and Technology, 78, 693.

Bautista, A. R. P. L.; Moreira, E. L. T.; Batista, M. S.; Miranda, M.S.; Gomes, I. C. S. (2004). Subacute toxicity assessment of annatto in rat. Food and Chemical Toxicology, v. 42, p. 625-629.

Bondarev, D.; Trhlíková, O.; Sedlácek, J.; Vohlídal, J. (2014). *Stability of MEH-PPV: Poly{[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene]vinylene} in solutions exposed to air in the dark and at daylight at laboratory temperature*. **Polymer Degradation and Stability** 110, 129.

Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R. R.; Marks, N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. (1990). *Light-emitting-diodes based on conjugated polymers*. **Nature**, v. 347, p. 539-54. Campbell, A.J.; Bradley, D.D.C.; Lidzey, D.G. (1997). *Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes*, **Journal of Applied Physics**, Vol: 82, Pages: 6326-6342, ISSN: 0021-8979.

Chinaglia, D.L.; Gozzi, G.; Alfaro, R.A.M.; Hessel, R. (2008). *Espectroscopia no laboratório de Ensino*. **Revista Brasileira de Ensino de Física**, v. 30, n.4, p.4504-1-4504-9.

Cumpston, B. H.; Jensen, K. F. (1995). *Photo-oxidation of polymers used electroluminescent devices*, **Synthetic Metals**, 73, 195-199.

Referências

Cumpston, B. H.; Parker, I. D.; Jensen, K. F. (1997). *In situ characterization of the oxidative degradation of a polymeric light emitting device*. **Journal of Applied Physics**, 81, 3716-3720.

D. Braun, A.J. Heeger. (1991) Visible light emission from semiconducting polymer diodes, Applied Physics Letters. 58.

Edge, R.; Mcgarvey, D. J.; Truscott, T. G. (1997). *The carotenoids as anti-oxidants – a review*. **Journal Photochemistry Photobiology. Biol. B,** 41: 189-200.

Grassie, N., Scott, G. (1985). Degradation of Polymer mixtures--part 10: The thermal degradation of blends of polyacrylonitrile and poly(methyl methacrylate) **Polymer Degradation Stability**., 1st edition, Cambridge University Press,V.1.1, 17.

Hawkins, W. L. (1984). Polymer Degradation and Stabilization: Springer-Verlag: Germany.

Hedan, J. M.; Giurginca, M. (1993). Grafting antioxidants. V Phenols with mercaptoheterocyclic substituents as antioxidants for dienic rubbers. Polymer Degradation Stability, 41, 157.