

Aspectos químicos e metabólicos de constituintes da fração lipídica de *Coffea arabica*

> Claudia Moraes de Rezende Instituto de Química Universidade Federal do Rio de Janeiro

Introdução: Cafés do Brasil

► Entre os maiores e mais antigos agronegócios no Brasil .

Regiões produtoras de café no Brasil (fonte: https://www.noticiasagricolas.com.br/noticias/cafe/237962-bsca-atualiza-mapa-das-origens-produtoras-de-cafe-nobrasil.html#.XYzSY0ZKjcs) ► Arábica (*Coffea arabica* L., Rubiaceae, ~70% da produção) e Robusta / Conillon (*C. canephora* P.)

▶ Principais estados produtores parceiros do LAROMA: Minas Gerais (arábica); Espírito Santo (arábica e robusta), Rio de Janeiro (arábica) e Rondônia (robusta)

Introdução: composição química do grão arábica cru

LAROMA

Teores médios da composição química do grão cru de café arábica.

Introdução: composição lipídica do grão arábica cru

Composição lipídica do grão cru de café arábica.

LAROMA

Speer and Kölling-Speer. Brazilian Jounal of Plant Physiology., 2006.

Introdução: Análise metabolômica

Análise abrangente e quantitativa do metaboloma de um sistema biológico, sendo metaboloma o conjunto dos metabólitos de baixa massa molecular (até 1500 Da) presentes no sistema.

Esquema das etapas envolvidas no estudo metabolômico do tipo composto alvo e perfil.

Introdução: Variáveis importantes para a composição do grão

- fatores genéticos e ambientais
- amadurecimento

Foto de grãos de cafés em diferentes graus de amadurecimento .

- processamento pós- colheita

Laboratório de Análise de Aromas

Introdução: precursores de aroma no café

00 mm

Introdução: metabólitos importantes da fração lipídica- DITERPENOS

De modo geral, o consume de ≥ 6 xícaras de café/dia tende a aumentar o nível de cholesterol sérico em humanos (Estudo Tromsø, Noruega, desde 1976)

LAROMA

LAROMA

Introdução: metabólitos importantes da fração lipídica- C-5HTs

 1. Giorno et al, 2018
 2. Van der Stegen, G., 1979;

 3. Kirkeda et al, 2017;
 4. Micale at al, 2009;

 5. Basurto-Islas et al, 2014;
 6. Lee et al, 2013

Resultados: Perfil metabólico do café por infusão direta em espectrometria de massas

LAROMA

-Infusão direta (DI-MS) em ESI-MS/QTOF de **cafés arábica e robusta, crus e** torrados, em diferentes processos de pós-colheita, de distintas origens geográfica (estados brasileiros) e qualidade da bebida (mole, dura e riado);

- Estudo realizado ao longo de quatro safras (2006/09);
- Análise multivariada;

- Construção de uma biblioteca "doméstica" para metabólitos de café e pela injeção de padrões para o ESI.

Resultados: Estudos de perfil metabólico do café por ESI-LC-MS

- Amorim et al (2009). Green and roasted Arabica coffees differentiated by ripeness, process and cup quality via electrospray ionization mass spectrometry (ESI-MS) fingerprinting . *Journal of the Brazilian Chemical Society*.
- Garrett et al (2012). Arabica and Robusta Coffees: Identification of Major Polar Compounds and Quantification of Blends by Direct-Infusion Electrospray Ionization–Mass Spectrometry. J. Agric. Food Chem.
- Tsukui e cols (2018). Atractyligenin derivatives in semi-dry and dry processes differentiation of Arabica green coffee beans by electrospray ionization mass spectrometry. *LWT*.

Compostos	\mathbf{R}_1	\mathbf{R}_2	R ₃	[M - H] ⁻	MS/MS		Outros fragmentos				
CATR I	$\mathrm{CO}_{2}\mathrm{H}$	$\mathrm{COCH}_2\mathrm{CH}(\mathrm{CH}_3)_2$	Glicose	771	[M-H-CO ₂ H] ⁻	727	391				
ATR I	н	$\rm COCH_2CH(CH_3)_2$	Glicose	727	[M-H-COCH ₂ CH(CH ₃) ₂] ⁻	643	625,481				
CATR III	$\mathrm{CO}_{2}\mathrm{H}$	COCH ₂ CH(CH ₃) ₂	Н	609	[M-H-CO ₂ H]	565	481				
ATR III	н	$\rm COCH_2CH(\rm CH_3)_2$	Н	565	[M-H-COCH ₂ CH(CH ₃) ₂] ⁻	481	463, 301				
CATR II	$\mathrm{CO}_{2}\mathrm{H}$	Н	Н	525	[M-H-CO ₂ H] ⁻	481	396				
ATR II	н	Н	н	481	[M-H-Glicose]	319	301,179,161				
ATR: Atractilosídeo: CATR: Carboxiatractilosídeo											

LAROMA

PLS-DA dos dados de ESI(+)-MS data para CD: café via semiúmida ; CL: café via úmida; CT: café via seca – safras diferentes.

Resultados: DESI – MS de grãos de diferentes pós-colheita

Análise ambiente em MS

Foto do experimento de ionização ambiente em espectrometria de massas para cafés crus intactos.

: principais discriminadores de pós-colheita pela técnica de ionização ambiente por espectrometria de massas - ionização de dessorção por eletrospray (DESI)

PCA plot dos cafés arábica por DESI-MS.

Gráfico de pesos do PCA dos cafés arábica por DESI-MS.

12

Resultados: Abordagem lipidômica (CLAE-EMAR) - método

LAROMA

Silva et al. Comprehensive lipid analyses of green Arabica coffee beans by LC-HRMS. Food Res. International, 2020.

Resultados: Abordagem lipidômica (CLAE-EMAR)-aplicação

Análise de componentes principais (PCA) para os extratos lipídicos obtidos a partir dos três procedimentos de extração nos modos positivo

Constituintes com maior importância na discriminação dos grãos verdes (imaturos): Fosfolipídeos (FL), C-5HTs, diacilgliceróis.

A produção de acilgliceróis (DG) ocorre mais ativamente no início do desenvolvimento do grão (Cheng et al., 2016)

FLs são os principais componentes da membrana celular e compostos sinalizadores no desenvolvimento dos grãos (Cowan, 2006; Zitouni et al., 2016)

O estado de maturação tem impacto mais forte no perfil lipídico do que o método pós-colheita

Cromatograma de íons totais (TIC) do perfil lipídico de café extraído pelos três métodos de extração Bligh-dyer (BD), Folch (FO) e Matyash (MA) nos modos positivo (A)

Silva et al. Comprehensive lipid analyses of green Arabica coffee beans by LC-HRMS. Food Res. International, 2020.

Resultados: Lipidômica e validação de metodologia por CLAE-EMAR utilizando diluição isotópica em cafés robusta

Extração dos lipídios - método de Matyash 15 mg grãos moídos + 16 μL SPLASH™ LIPIDOMIX®

Análise por CL-EMAR CL Dionex Ultimate 300 acoplado a um Q-Orbitrap (Thermo Q-Exactive Plus) coluna de fase reversa CSH C18 (150 mm x 2,1 mm; 2,5 μm) • (±) Full Scan *m/z* 140-1700 • (±) AIF • (±) ddMS² top 6 (Análise dos CQs)

> Processamento dos dados e análise estatística Xcalibur 2.2 Trace Finder 4.0 MS-Dial 4.70 Graph Pad 6.0 Metaboanalyst 4.0

Café robusta (21/22) de Rondônia

- Manaus –AM (n=10)
- Porto Velho –RO (n=10)
- Ouro Preto do Oeste RO (n=10)

(em publicação)

aboratório de Análise de A Resultados: Análise de óleo de café bruto por GC x GC Ampliação região dos ésteres e DAGs Caf_{20:C} Cav _{20:0} Primeira dimensão v 18:0 1D CG-FID 100 no GC x GC-FID do óleo de café 80 do óleo de café 60 17 16.6 16.8 17.2 17.4 Injeção pulsada t_e (mir Coeluição dos ésteres dos 16 18 20 diterpenos na 1D- CG-FID Cold on-column 6.0 (Guerrero et al, 2005. ésteres de caveol 5.5 Speer-Kolling-Speer, 2006 diacilglicerois 5.0 Segunda dimensão <u>ග</u>4.5 ésteres de cafestol no GC x GC-FID do óleo de café 4.0 3.5 3.0 $^{1}t_{R}$ (min) 28 22 24 26 30 20 Expansão da região dos ésteres de diterpenos cafestol e caveol e DAGS em GC X GC.

Novaes et alAnalysis of underivatised low volatility compounds by comprehensive two dimensional gas chromatography with a short primary column. Journal of Chromatography A, 2017 16

Resultados: Isolamento de cafestol e caveol de grãos de café arábica

Fluxograma: isolamento dos diterpenos cafestol e caveol a partir do grão de café cru

LAROMA

00 0000

Resultados: Isolamento de cafestol e caveol de grãos de café

Originalmente 24 éteres dos diterpenos relatados em cafés arábica e robusta

LAROMA

Resultados: Hidrogenação de caveol em fluxo contínuo

Caveol totalmente convertido em cafestol após 9,8 segundos de reação

Conversão estável ate 489 reações contínuas sem perda da seletividade.

Entrada	Catalisador	Vazão (mL min ⁻ ¹)	Tempo de residência (s)	Conversão (%)*	C (%) *	PD (%) *	PHF (%) *
1	Pd/C 5%	2,3	9,8	100	>99	0	0
2	Pd/C 5%	0,4	56,5	100	61	0	39
3	Pd/C 5%	0,2	113,1	100	0	0	100
4	Pd/C 10%	2,3	9,8	100	33	3	64
5	Pd/C 10%	0,4	56,5	100	0	6	94
6	Pd/C 10%	0,2	113,1	100	0	5	95

Laboratório de Análise de Arom

Cromatograma da reação com Pd/C 5% após 9,8 s (coluna DB-17HT (10 m, 0,25 mm, 0,15 mm), 150 °C (0,25 min) à 10 °C min⁻¹ a 340 °C.

Reator de hidrogenação em fluxo contínuo H-Cube[®] Mini Plus.

Resultados: síntese das C-5HTs por mecanoquímica

Síntese de amidas de serotonina por mecanoquímica (estudos de at. antinociceptiva)

LAROMA

Fig. Moinho de bolas planetário Retsch PM 100.

- Frequência de rotação (rpm)
- Tempo reacional
- Tamanho das esferas
- Número de esferas
- Massa

Resultados: Fermentação controlada de grãos arábica

- Produtor da região do RJ;

- Diferentes combinações de culturas comerciais de *Saccharomyces cerevisiae* sob diferentes condições de processamento em café arábica (pH, T, massa e tempo);

- Foi avaliado o impacto em cafeina, ác. clorogênicos, teor de óleo, C-5HTs, cafestol/ caveol;

- Anteriormente, redução dos diterpenos observada em steamed coffees (bebidas ruins, Speer e Kolling-Speer, 2006). Composição
da cultura
iniciadoraFleischmann
Fermol Elegance
Perlage BBVariáveis
daMassa da cultura
Tempo,
Temperatura pH

Cepas da indústria alimentícia empregadas na panificação; vinicultura; espumantes

- 56 tratamentos realizados;
- Redução do teor das amidas C20-5HT, C22-5HT (>30%) e dos diterpenos cafestol e caveol (>50%), frente ao controle;
- Bebidas acima de 80 pontos;
- Foram observados, por LC-MS/MS, metabólitos do cafestol por biotransformação.

Figura 29. Delineamento experimental para a fermentação dos grãos de café verde. Representação da composição do planejamento fatorial fracionário $(2^{4\cdot 1})$ com o planejamento de misturas (C).

Resultados: Metabólitos do cafestol em zebrafish in vivo via CLUE-ESI-EMAR

- Investigação dos metabólitos do cafestol produzidos pelo *zebrafish* através da CLUE-ESI-EMAR – análise da água do aquário (*in vivo*);

- Correlação da identidade dos metabólitos encontrados com aqueles preditos por química computacional, utilizando os softwares SMARTCyp, XenoSite e Way2Drug;

- Proposta de rotas de fragmentação para os metabólitos encontrados a fim de elucidá-los por EMAR e EM/EM.

Resultados: Metabólitos do cafestol em zebrafish *in vivo* via CLUE-ESI-EMAR

Agradeço a atenção!

claudia.rezendeufrj@gmail.com

