

CATALIZADORES METALICOS CON ESTRUCTURA CORE@SHELL

GINA PECCHI SÁNCHEZ

Facultad de Ciencias Químicas Universidad de Concepción

16 noviembre 2022

Catalizador

- Aumenta la velocidad de la reacción
- Composición química definida
- Actúa en concentración muy baja
- No modifica la TD de la reacción
- Se recupera al final de la reacción

Catalizadores metálicos con estructura core@shell

Estructura core@shell

 Una estructura core @shell posee un núcleo (core) recubierto por una o más capas (shell) generando una única unidad

Diseño de catalizadores core@shell

¿Qué es lo mas relevante para un catalizador metálico heterogéneo?

Conseguir una reducción parcial del metal de transición •

> NiO - Ni° Co₃O₄ - Co°

Mejorar la selectividad de un metal noble?

Modificar el entorno electrónico del metal reducido

Pd° - Pd^{ō+} Rh° - Rh ^{ō+}

Mejorar la actividad de un metal de transición?

• Conseguir una reducción parcial del metal de transición

NiO - **Ni**° Co₃O₄ - **Co**°

• Aumenta la dispersión del Co

 Aumenta la dispersión del Co y modifica las propiedades electrónicas del Co (sinergia)

Rh es un promotor estructural

Pd es un promotor electrónico

F. Morales, B.M. Weckhuysen, Promotion effects in Co-based Fischer-Tropsch catalysis, Catalysis, 19 (2006) 1-40

Co-Pd@SiO₂ y Co-Rh@SiO₂ Dr. Cristian Campos Dra. Tatiana Bustamante Incorporación noble metal Co₃O₄ NPs@PVP Síntesis $NH_{3 (ac)} pH:10$ solvotermal Co(NO₃)₂.6H₂O precursor metal 180 °C x 4 h noble **PVP K30** $+NH_{3(ac)}$ Stöber +CTAB +TEOS modificado +Etanol/H₂O Recubrimiento Reducción Calcinación Co⁰ con shell de SiO₂ 300, 400, 500 °C x 6 h

500 o 600 °C, 30 mL/min H₂

M⁰

(M: Rh ó Pd)

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

$Co-Rh@SiO_2$ y $Co-Pd@SiO_2$

Dr. Cristian Campos

Dra. Tatiana Bustamante

 $0.5 Rh/Co_3 O_4 @ SiO_2$ $1.0 Rh/Co_3 O_4 @ SiO_2$ $3.0 Rh/Co_3 O_4 @ SiO_2$

Porque recubrir con SiO₂? • para evitar la sinterización y el leaching

T. Bustamante et al, Journal of Catalysis, 385 (2020) 224-237. T. Bustamante et al, Catalysis Today, 356 (2020) 330-338

Co²⁺ intersticios tetraédricos y Co³⁺ octaédricos de la red cúbica oxígeno

11

Bimetálicos Rh-Co@SiO₂

La presencia de Rh permite obtener Co° metálico a una menor temperatura de reducción.

Bimetálicos Pd-Co@SiO₂

• La presencia de Pd permite obtener Co° metálico a una menor temperatura de reducción.

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

Se modifica la reducibilidad del cobalto con la presencia de Pd o Rh?

	TPR-H ₂ (red),	%
Nanocatalizador	mmol g cat ⁻¹	reducibilidad,
Co@SiO ₂ red 300°C	1.9	48
Co@SiO ₂ red 400°C	0.74	79
	0.54	93 7
$1.0PdCo@SiO_{2}$ 400	0.14	99
$3.0PdCo@SiO_{2} 400$	0.05	99
	0.42	88
$0.5RhCo@SiO_2$ 300	0° C 0.52	90
1.0RhCo@SiO ₂ 300	0°C <u>0.11</u>	97
3.0RhCo@SiO ₂ 300	D°C	

TPR permite cuantificar la cantidad de cobalto que se reduce y calcular el grado de reducibilidad.

- La mayor reducibilidad se atribuye al efecto H₂ spill-over
- El metal noble reducido (Pd o Rh) facilita la reducción de las especies de óxido de cobalto a cobalto metálico.

Podemos cuantificar cuanto cobalto se reduce a Co° metálico?

 $Co^{\circ}@SiO_2$ red 400°C

1.0PdCo@SiO₂ 400°C

3.0RhCo@SiO₂ 300°C

Podemos identificar al metal noble en la superficie?

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

Podemos cuantificar cuanto cobalto se reduce a Co° metálico?

Catalizador			BE (e	V)	
	*M ⁰	Co°		Co ^{2+,3+}	
Co°@SiO ₂ red 400°C		778.0	(43%)	781.5 (57%)	4
0.5PdCo@SiO ₂		778.1	(47%)	781.3 (53%)	
1.0PdCo@SiO ₂ 400°C	334.9	778.3	(57%)	781.5 (43%)	CoOx Coo
3.0PdCo@SiO ₂	334.8	778.3	(62%)	781.7 (38%)	
0.5RhCo@SiO ₂	306.5	778.0	(35%)	781.0 (65%)	
1.0RhCo@SiO ₂ 300°C	306.4	777.9	(51%)	780.5 (49%)	E Co ⁰ Co ⁰ Rh
3.0RhCo@SiO ₂	306.5	777.9	(80%)	781.9 (20%)	Co ⁰ Co ⁰ Co ⁰

• El aumento de Co° metálico superficial con el contenido de Pd y Rh respalda el efecto de un promotor electrónico

Elevada uniformidad y estrecha distribución de poros
2.7 nm (shell mesoporoso)

Bimetálicos Co-Pd@SiO₂ y Co-Rh@SiO₂

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

HRTEM Co@SiO₂ red 400°C

Como están distribuidos los elementos en core@shell?

Micrografías de alta resolución HRTEM permite medir distancias interplanares de las estructuras cristalinas a través de la simplificación de la imagen por la aplicación de una trasformada de Fourier.

Análisis line scan: microanálisis donde la línea diametral muestra la presencia de Co y Si.

HRTEM bimetálicos

$3.0PdCo@SiO_2$

3.0RhCo@SiO₂

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil , noviembre 2022

21

Medida de actividad catalítica

Actividad catalítica Co@SiO₂ T reacción 100°C

23

Actividad catalítica de RhCo@SiO₂ T reacción 100°C

T reducción del core@shell= 300°C

Se aumenta la actividad del Co con la adición de Rh!!

Actividad catalítica PdCo@SiO₂ T reacción 100°C

Cual de los dos promotores es mejor??

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

Ajuste a una cinética de primer orden

Un ajuste cinético lo muestra mejor!!

$$v = k [A]$$
 $Ln\left(\frac{A}{A_0}\right) = -kt$ $Ln[1-x] = -kt$

T reducción 400°C

T reducción 300°C

Resultados cinéticos

Tabla de datos de acti	vidad catalítica Nanocatalizador	Conversión (%)	k' (min ⁻¹ ·g _{cat} -1)	v _o , (mmolL ⁻¹ 'min ⁻¹)	TOF (h ⁻¹)
	Co°@SiO ₂ red 300°C	4			
T reducción 300°C	0.5RhCo@SiO ₂ 300°C	31	0.027	1.52	34
	1.0RhCo@SiO ₂	98	0.073	4.40	50
	3.0RhCo@SiO ₂	100	0.287	19.5	112
	Co°@SiO ₂ red 400°C	36	0.020	0.94	17
T reducción 400°C	0.5PdCo@SiO ₂	64	0.041	2.34	36
	1.0PdCo@SiO ₂	86	0.130	7.82	75
	3.0PdCo@SiO ₂	99	0.204	13.9	97

El aumento en conversión, k y $v_{o, i}$ ¿Puede ser atribuido al efecto promotor en la reducibilidad del Co?

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil , noviembre 2022

Correlación de los resultados cinéticos con la caracterización

Correlación actividad catalítica con resultados de caracterización

Nanocatalizador	Conversión (%)	k' (min ⁻¹ 'g _{cat} ⁻¹)	v _o , (mmolL ⁻¹ 'min ⁻¹)	TOF (h ⁻¹)	Metal noble %	Co ⁰ % XPS	
Co°@SiO ₂ red	300°C 4						
0.5RhCo@SiO ₂	31	0.027	1.52	34	0,4	35	
1.0RhCo@SiO ₂	98	0.073	4.40	50	1,6	51	T red 300°C
3.0RhCo@SiO ₂	100	0.287	19.5	112	2,5	80	
Co°@SiO ₂ red	400°C 36	0.020	0.94	17		43	,
0.5PdCo@SiO ₂	64	0.041	2.34	36	0,5	47	
1.0PdCo@SiO ₂	86	0.130	7.82	75	0,8	57	T red 400°C
3.0PdCo@SiO ₂	99	0.204	13.9	97	2,5	62	

"TPR-H_{2.} DRX y XPS indican que Pd y Rh generan mayor **Co⁰ en superficie activo** para hidrogenar el grupo₂₀ NO₂"

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil , noviembre 2022

¿Como es la estabilidad??

1.0RhCo@SiO₂

- Pérdida actividad gradual
- Proceso regeneración no la recupera porque la caracterización indica que se destruye el shell

1.0PdCo@SiO₂

- Pérdida actividad notable
- Proceso de regeneración la recupera y se postula que durante la reacción se rehidrata el óxido de cobalto y luego de reducirlo recupera la actividad 30

CONCLUSIONES

- Para el catalizador monometálico de cobalto, la configuración core @shell mejora el comportamiento catalítico para la reacción de hidrogenación de NFM en comparación a un catalizador soportado e Co/SiO₂.
- Para los catalizadores bimetálicos existe un efecto promotor estructural al aumentar la cantidad de Co⁰, demostrado por TPR, DRX, XPS y la actividad catalítica en la reacción de NFM

RhCo@SiO₂ 300°C

- Mayor actividad catalítica a una menor T reducción
- Mayor estabilidad operacional sin regeneración

 Mayor estabilidad operacional en ciclos consecutivos redox

PdCo@SiO₂ 400°C

- Conseguir una reducción parcial del metal de transición •

NiO - Ni° Co₃O₄ - Co° Mejorar la selectividad de un metal noble?

Modificar el entorno electrónico del metal reducido

Pd° - Pd^{ō+} Rh° - Rh ^{ō+}

Modificar el entorno electrónico del metal reducido

Pd° - **Pd^{δ+}** Rh° - **Rh**^{δ+}

Efecto SMSI (Strong Metal Support Interaction)

En presencia de un óxido reducible (TiO₂, CeO₂) una partícula metálica de un metal noble (Pt°) sometida a alta temperatura de reducción (500°C), puede cubrirse con especies del óxido reducible formando una especie parcialmente oxidada.

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

SMSI

 $\mathsf{Fe}_2\mathsf{O}_3@\mathsf{SiO}_2@\mathbf{TiO}_2\mathsf{-}\mathsf{Pt}$

Fe₂O₃@SiO₂@CeO₂-Pt

SMSI

Dr. Robinson Dinamarca

TiO₂

Dr. Cristian Campos

Efecto SMSI en un core@shell Pt

Fe₂O₃@SiO₂-Pt

HRTEM

 $Fe_2O_3@SiO_2@CeO_2$

36

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil , noviembre 2022

Medida de actividad catalítica

HRTEM core@shell 5%Pt

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

Efecto del contenido de Pt (1% y 5%)

Efecto del contenido de Pt (1% y 5%)

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

XPS core@shell 1%Pt

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

Actividad catalítica core@shell 1%Pt

Reciclos para core@shell 1%Pt

$@SiO_2@TiO_2-Pt$

ciclo1 ciclo2 ciclo3

Los reciclos destruyen el core@shell!!

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

HRTEM @1%Pt@SiO₂

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

Superficie específica @1%Pt@SiO₂

Y se transforman en materiales porosos!!!!

	O (2 1)	ICP			
Sistema	S _{BET} (m² g⁻¹)	%Pt	%Fe		
$Fe_2O_3@SiO_2-Pt@SiO_2$	141	1.0	53		
$Fe_2O_3@SiO_2@TiO_2-Pt@SiO_2$	134	0.9	53		
$Fe_2O_3@SiO_2@CeO_2-Pt@SiO_2$	132	0.9	54		

¿Cual sistema es más activo?

X total 10%

		k		S (%)	
	X (%)	(min ⁻¹ g _{Pt(sup)} -1	HCAL	COL	HCOL
Fe ₂ O ₃ @SiO ₂ -Pt	78	47	17	51	32
Fe ₂ O ₃ @SiO ₂ @TiO ₂ -Pt	100	10	3	95	2
Fe ₂ O ₃ @SiO ₂ @CeO ₂ -Pt	100	34	4	90	6

		k	k	S (%)		
	X (%)	min-1 g _{Pt} -1	MIN ⁻¹ g _{Pt(poro)} -1	HCA L	COL	HCOL
@SiO ₂ -Pt@ SiO₂	100	21.2	16.4	5.0	86	9.0
$@SiO_2@TiO_2-Pt@SiO_2$	100	30.1	25.3	16	75	9.0
@SiO ₂ @CeO ₂ -Pt@SiO ₂	100	25.1	-	13	67	20

¿Cual sistema es más estable?

$@SiO_2@TiO_2-1\%Pt$

@SiO₂@TiO₂-1%Pt@SiO₂

Selectividad COL

@SiO₂@CeO₂-1%Pt

@SiO₂@CeO₂-1%Pt@SiO₂

 La presencia de un oxido reducible en una estructura Fe₃O₄@SiO₂ con 1% Pt modifica el sitio activo y mejora la selectividad hacia la hidrogenación selectiva del grupo carbonilo por efecto SMSI

Mayor selectividad hacia grupo carbonilo

 $@SiO_2@TiO_2-1\%Pt$

 El efecto de introducir una porosidad controlada con un recubrimiento permite formar estructuras core@multishell que mejoran la estabilidad de la estructura y retardan la sinterización y leaching de la fase activa

@SiO₂@CeO₂-1%Pt@SiO₂

@SiO₂@CeO₂-1%Pt

AGRADECIMIENTOS

..... muchas gracias por vuestra atención

35° Congreso Latinoamericano de Química CLAQ; 61 Congreso Brasileño de Química, Rio de Janeiro, Brasil, noviembre 2022

¿Como es la estabilidad??

1.0RhCo@SiO₂

- El catalizador va perdiendo en forma discreta su actividad y el proceso de regeneración no lo mejora.
- La caracterización indica que se destruye el shell

¿Como es la estabilidad??

1.0PdCo@SiO₂

No se destruye el shell

- El catalizador recupera su actividad cuando se regenera
- Durante la reacción se oxida el Co y se rehidrata el óxido de cobalto, luego de reducirlo recupera la actividad.