

SYNTHESIS AND POTENTIAL THERAPEUTIC APPLICATIONS OF NOVEL ACYCLIC NUCLEOSIDE PHOSPHONATES

Zlatko Janeba

Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences

Prague, Czech Republic

14-18 November 2022 Rio de Janeiro, Brazil

Senior research group at IOCB Prague

Medicinal Chemistry of Nucleotide Analogues

http://www.uochb.cz/web/structure/901.html

Current state: 17 members

3 senior scientists
1 postdoc
9 Ph.D. students + 3 graduate student
1 part-time secretary

Main research interests/projects:

1. ANPs as inhibitors of bacterial and human ACs Purdue University

- 2. ANPs as inhibitors of parasitic and bacterial HG(X)PRT & APRT University of Queensland
- 3. ANPs as inhibitors of PNP (human, mycobacterial, malarial)
- 4. Antiviral compounds (ANPs & pyrimidine NNRTIs) Gilead Sciences, Rega Institute
- 5. Substituted pyrimidines with anti-inflammatory properties Weizmann Institute of Science
- 6. 5-Phenylazopyrimidines, photoswitches
- 7. Alpha-2A adrenoceptor antagonists (yohimbine der., small molecules) UCL

Main research interests/projects:

1. ANPs as inhibitors of bacterial and human ACs Purdue University

2. ANPs as inhibitors of parasitic and bacterial HG(X)PRT & APRT University of Queensland

3. ANPs as inhibitors of PNP (human, mycobacterial, malarial)

- 4. Antiviral compounds (ANPs & pyrimidine NNRTIs) Gilead Sciences, Rega Institute
- 5. Substituted pyrimidines with anti-inflammatory properties Weizmann Institute of Science
- 6. 5-Phenylazopyrimidines, photoswitches
- 7. Alpha-2A adrenoceptor antagonists (yohimbine der., small molecules) UCL

1. What are ANPs?

2. Inhibitors of bacterial & human ACs

3. Inhibitors of human PNP

1. What are ANPs?

2. Inhibitors of bacterial & human ACs

3. Inhibitors of human PNP

Design of antiviral ANPs

Elion G.B., Furman P.A., Fyfe J.A., de Miranda P., Beauchamp L, Schaeffer H.J., PNAS, 1977, 74, 5716.

De Clercq E., Descamps J., De Somer P., Holý A., Science, 1978, 200, 563.

Design of antiviral ANPs

Nucleoside analogues must be transformed successively to their mono-, di- and triphosphates, to become active.

Problematic phosphorylation? Stability of NMPs? Circumvented by the design of ANPs.

De Clercq E., Holý A., Rosenberg I., Sakuma T., Balzarini J., Maudgal P. C.: Nature, 1986, 323, 464.

Therapeutic success of ANPs

2 major approaches for nucleoside analogues

acyclic nucleoside phosphonates (ANPs) and their prodrugs

pioneered by Prof. Antonín Holý (1936-2012) IOCB Prague

ProTide technology

pioneered by Prof. Chris McGuigan (1958-2016) School of Pharmacy and Pharmaceutical Sciences Cardiff University

ProTides - Pronucleotides

2 major approaches for nucleoside analogues

ProTide technology

pioneered by Prof. Chris McGuigan (1958-2016) School of Pharmacy and Pharmaceutical Sciences Cardiff University

acyclic nucleoside phosphonates (ANPs) and their prodrugs

pioneered by Prof. Antonín Holý (1936-2012) IOCB Prague

New era of HAART

- Replacement of TDF with TAF in Stribild

TDF TAF

Stribild[®] (2012) - Genvoya[®] (2015) Complera[®] (2012) - Odefsey[®] (2016) Truvada[®] (2004) - Descovy[®] (2016) Biktarvy[®] (2018)

Stribild[®] as a "quad pill" (2012) (**TDF** + emtricitabine + elvitegravir + cobicistat) **Genvoya**[®] (2015) (**TAF** + emtricitabine + elvitegravir + cobicistat)

New era of HAART

HIV-target cell loading by TAF

TAF - enhance

plasma levels of TFV.

TAF - enhanced stability in plasma while rapid activation in cells (TAF produces higher levels of intracellular TFV, diphosphate, the pharmacologically active metabolite, in HIV-target cells at substantially reduced oral doses of TFV equivalents).

So, what is the magic of TAF?

TDF causes **renal and bone toxicity**,

which is associated with high circulating

1. What are ANPs?

2. Inhibitors of bacterial & human ACs

3. Inhibitors of human PNP

ANPs & bacterial AC inhibitors

Anthrax (EF) – bioterrorism

Whooping cough (ACT) - re-emerging disease (USA, EU)

Structural analyses of the interactions of PMEApp with EF

Shen Y. et al., PNAS 2004, 101, 3242.

PMEA – lead compound

Fluorescent ANPs as bacterial AC inhibitors

Gille, Seifert, J. Biol. Chem. **2003**, *278*, 12672. Gille, Lushington, et al. *J. Biol. Chem.* **2004**, *279*, 19955. Seifert, Dove, *Trends Microbiol.* **2012**, *20*, 343.

Fluorescent ANPs as bacterial AC inhibitors

Gille, Seifert, J. Biol. Chem. **2003**, *278*, 12672. Gille, Lushington, et al. *J. Biol. Chem.* **2004**, *279*, 19955. Seifert, Dove, *Trends Microbiol.* **2012**, *20*, 343.

Fluorescent ANPs as bacterial AC inhibitors

Many possible variations, e.g. Synthesis?

Břehová, et al.: ChemMedChem 2016, 11, 2534.

Břehová, et al.: ChemMedChem 2016, 11, 2534.

X-ANT-ANPs diphosphates NH_2 NH_2 NH_2 NH_2 Base CI **P-P-P**-O-Ν N Ν `NH₂ 0 OH Ν 'N ŌН design P-0-**P**-**P** ₽-0-**₽**-₽ `O´ °0 H₂N、 റ óн óн ö 0 Bn OH ₽N► PMEApp adefovir diphosphate Y = O, NH 0⁄ 0 (M)ANT-NTP X = H, Cl, Br X = H, halogen COO*i*Pr COO*i*Pr**∖**∕ŃH H₂N H_2N Β'n Frydrych, et al.: Břehová, et al.:

ChemMedChem 2018, 13, 199.

ChemMedChem 2016, 11, 2534.

NH_2 X-ANT-ANPs NH_2 NH_2 NH_2 Base CI diphosphates P-P-P-O NH_2 OH design ^{||} Р-О-**Р-Р** -0-**P**-P -0-**P**-**P** Ò. ςΩ H₂N ÓН ÓН ö Ô Bn O H ⊮_N∎ PMEApp Y = O, NHadefovir diphosphate 0 O² X = H, halogen COO*i*Pr (M)ANT-NTP COO*i*Pr ŃΗ X = H, Cl, Br H_2N H_2N Β'n Frydrych, et al.: Břehová, et al.: ChemMedChem 2018, 13, 199. ChemMedChem 2016, 11, 2534. 120 120 120 ---30 NH_2 - 27 **- - -** 15 Fluorescence intensity (% of maximum) Fluorescence intensity (% of maximum) Fluorescence intensity (% of maximum) CI~ 100 100 100 ----- 30_ACT · 27_ACT 15_ACT 80 80 80 -27 ACT CaM **FRET experiments** —— 15_ACT_CaM NH_2 60 60 60 Tryptophan-specific 40 40 40 excitation 27 20 20 20 wavelength of 295 nm ÓNa ÓNa ÓNa Ω 0 n 320 340 340 360 380 440 440 440 480 480 520 520 520 320 340 360 380 400 440 460 460 480 520 520 520 320 340 360 380 400 440 440 460 460 460 520 520 520 λ (nm) λ (nm) λ (nm) $IC_{50} = 77 \text{ nM}$ direct ACT inhibition 15 27 30 ר 120 120 120 r Fluorescence intensity (% of ∆max) Fluorescence intensity (% of ∆max) (Sigma) Fluorescence intensity 100-100-100-(% of Δ max) IC₅₀=214 nM 80-IC₅₀=101 nM IC₅₀=61 nM 80-80-60-60-60 Saturation of ACT active site 40 40 40-20 20 20 0

0

logc [nM]

logc [nM]

2

logc [nM]

Other structural analogues

Šmídková, Česnek, et al.: Antimicrob. Agents Chemother. 2014, 58, 664.

prodrug 5

- ACT inhibition (158 nM, viability 93 %)
- enzymatic hydrolysis in macrophage homogenate
- passage across Caco-2 monolayer
- synthesis, handling

Šmídková, Česnek, et al.: Antimicrob. Agents Chemother. 2014, 58, 664.

Comp.	R1	IC ₅₀ [μM]ª	Viability, 10 µM [%] ^b
4	н	0.16±0.01	93
5a	Me	1.14±0.34	94
5b	Et	5.43±0.10	105
5c	Pr	>10	N.D.
5m	NH ₂	0.97±0.13	160
5n	F	0.14±0.04	83
50	CI	0.54±0.06	142

Pharmacokinetic study: - 5n more stable in plasma than in macrophage homogenate - distribution of free ANP to the target tissue (lungs)

- SELECTIVITY mAC1, mAC2 and mAC5 – no inhibition (collab. Dr. V. J. Watts)

ANPs as bacterial ACs inhibitors

Reagents and conditions: i) NIS, THF, rt; ii) $(CH_3)_3Si(CH_2)_2OCH_2CI$, NaH, DMF, rt; iii) $CH_2=CHSnBu_3$, $Pd(t-Bu_3P)_2$, THF, rt; iv) 1) BBN, THF, 0 °C to rt, 2) aq. NaBO₃, ; v) *n*-BuLi, $CF_3SO_2OCH_2P(O)(OiPr)_2$, THF, -78 °C; vi) EtOH/NH₃, 100 °C; vii) HCI 2 eq, H₂O,130 °C; viii) TMSBr/TMSI, pyridine, rt; then HCI.(*L*)-H₂N-CH(COO*i*Pr)CH₂Ph, PPh₃, Aldrithiol-2, pyridine, Et₃N, 70 °C

Česnek, et al.: ChemMedChem 2018, 13, 1779.

3nd generation of ACT inhibitors – non-purine analogues

Česnek, et al.: *ChemMedChem* **2018**, *13*, 1779.

Comp.	ACT inhibition IC ₅₀ [μM]	Viability, 10 μM [%]	
1	>10	ND	
2	>10	ND	
3	0.051	120	
4	0.134	90	
5	1.268 ± 0.222	89	
6	3.780 ± 0.360	105	
7	2.185 ± 0.454	106	
8	0.016 ± 0.004	109	
9	0.208 ± 0.088	101	
10	>10	ND	
11	0.196 ± 0.037	84	
12	1.235 ± 0.603	96	

Inhibition of ACT (*B. pertussis*) in cell-based assay

ANPs as bacterial ACs inhibitors

Reagents and conditions: i) TMSBr/CH₃CN; ii) DCC, morpholine, *t*BuOH, H₂O, reflux; iii) (Bu₃N)₂P₂O₇, Bu₃N, DMF.

Direct inhibition of ACT and EF

Comp.	ACT Enzo IC ₅₀ (nM)	ACT Sigma IC ₅₀ (nM)	EF IC ₅₀ (nM)
РМЕАрр	13.6 ± 4.7	16.0 ± 0.1	11.5 ± 0.6
13	$\textbf{4.08} \pm \textbf{0.75}$	0.51 ± 0.12	2.54 ± 0.65
14	20.8 ± 0.1	12.7 ± 0.3	5.28 ± 1.33
15	13.3 ± 2.3	9.32 ± 2.61	20.9 ± 1.8

Česnek, et al.: ChemMedChem 2018, 13, 1779.

ANPs as <u>human</u> ACs inhibitors

3nd generation of ACT inhibitors – non-purine analogues

Future research opportunities

- selective inhibition of mAC1 (compared to other mACs)
- neglected therapeutic area
- neurodegenerative disorders; neuropathic pain

Comp.	Response of Control (%)			
	mAC1	mAC2	mAC5	
3	66 ± 15	207 ± 39	139 ± 14	
4	48 ± 12	176 ± 16	108 ± 8	
5	23 ± 4	236 ± 39	182 ± 10	
6	24 ± 5	238 ± 49	215 ± 17	
7	22 ± 6	182 ± 50	229 ± 33	

Inhibition of mammalian ACs

Česnek, et al.: ChemMedChem 2018, 13, 1779.

SAR study

Synthesis of bisamidate precursor

M. Česnek, J. Skácel, P. Jansa, M. Dračínský, M. Šmídková, H. Mertlíková-Kaiserová, M. Soto-Velasquez, V. Watts, Z. Janeba, *ChemMedChem* **2018**, *13*, 1779-1796

Suzuki-Miyaura coupling

ACT inhibition

Kraina, et al.: manuscript in preparation

Břehová, et al.: Eur. J. Med. Chem. 2021, 222, 113581.

Břehová, et al.: Eur. J. Med. Chem. 2021, 222, 113581.

Břehová, et al.: Eur. J. Med. Chem. 2021, 222, 113581.

Halogen dance reaction

SAR study

- extensive SAR study, potent ACs inhibitors
- different MOA (vs. antibiotics)
- combination with antibiotics possible
- reduction of morbidity and mortality of anthrax/pertussis
- use as prophylaxis
- animal models of anthrax and pertussis?

- selective inhibition of mAC1 (compared to other mACs)
- neglected therapeutic area
- neurodegenerative disorders;
 neuropathic pain

1. What are ANPs?

2. Inhibitors of bacterial & human ACs

3. Inhibitors of human PNP

http://www.columbia.edu/cu/biology/courses/w3034/Larry/readings/PurineChapter/PurineChapter.html

Enzymes of interest:

PNP (human, plasmodial, mycobacterial)
HG(X)PRT (plasmodial, trypanosomal, mycobacterial, human)
IMPDH, GMPS, DHODH

PNP Inhibitors - overview

• Potential of PNP inhibitors for a treatment of blood cancers is known for a long time Krenitsky, T. A., et al., J. Biol. Chem. 1968, 265 (6), 3066–3069.

IC₅₀: 36 nM PNP (RBC)

- PNP inhibitors reported to date failed in preclinical or clinical studies mostly due to poor pharmacodynamic or pharmacokinetic properties:
 - **Peldesine** failed (phase III clinical study) did not show better efficacy than placebo poor solubility and permeability of the compound.
 - Duvic, M., et al., J. Am. Acad. Dermatol. 2001, 44 (6), 940–947.
 - Experimental compound **CI-972** failed in clinical studies for unknown reasons. Gilbertsen, R. B., et al., *Biochem. Biophys. Res. Commun.* **1991**, *178* (3), 1351–1358.
 - Other **peldesine-derivatives** (9-deazapurines) exhibited similar potency with very low aqueous solubility. Montgomery, J., et al., *Med. Chem.* **1993**, *36* (1), 55–69.
 - Compounds based on **guanine** and **benzylphosphonate** moiety potent inhibitors with better aqueous solubility.

Halazy, S., et al., *Tetrahedron* **1996**, *52* (1), 177–184.

PNP Project **PNP** Inhibitors – overview (cont.)

<u>General conclusion</u>: reported compounds exhibited very poor water solubility – not suitable for pharmaceutical application.

PNP Project **PNP Inhibitors – overview (cont.)**

<u>General conclusion</u>: reported compounds exhibited very poor water solubility – not suitable for pharmaceutical application.

• Forodesine exhibits high inhibitory activity against PNP and T-cell cancer cell lines. Kicska, G., et al., *Proc. Natl. Acad. Sci. U. S. A.* 2001, *98* (8), 4593–4598.

- However, forodesine exhibits poor oral bioavailability (<10% in human and non-human primates) Kilpatrick, J. M., et al., *Int. Immunopharmacol.* **2003**, *3* (4), 541–548.

The good news?!

Forodesine (BCX-1777, Imm-H, Mundesine) was approved for market in Japan in 2017.

PROOF OF CONCEPT MOLECULE!

What we know about forodesine?

- Originator Albert Einstein College of Medicine; Industrial Research Limited
- **Developer** BioCryst Pharmaceuticals; Mundipharma International
- Class Antineoplastics; Antipsoriatics; Purine nucleosides; Pyrimidinones
- Mechanism of Action Immunosuppressant; PNP inhibitor
- **Orphan Drug Status** Chronic lymphocytic leukaemia; Cutaneous T cell lymphoma; Leukaemia; Acute lymphoblastic leukaemia; T cell prolymphocytic leukaemia; Hairy cell leukaemia
- Orally-available transition-state analogue
- Selectively targets T lymphocytes (action by dCK found in activated T cells)
- Not incorporated into DNA (as many other nucleoside analogues)
- Forodesine uptake into cells (ENT1 and ENT2)

The good news?!

Forodesine (BCX-1777, Imm-H, Mundesine) was approved for market in Japan in 2017.

PROOF OF CONCEPT MOLECULE!

What we know about forodesine?

- Originator Albert Einstein College of Medicine; Industrial Research Limited
- **Developer** BioCryst Pharmaceuticals; Mundipharma International
- Class Antineoplastics; Antipsoriatics; Purine nucleosides; Pyrimidinones
- Mechanism of Action Immunosuppressant; PNP inhibitor
- **Orphan Drug Status** Chronic lymphocytic leukaemia; Cutaneous T cell lymphoma; Leukaemia; Acute lymphoblastic leukaemia; T cell prolymphocytic leukaemia; Hairy cell leukaemia
- Orally-available transition-state analogue
- Selectively targets T lymphocytes (action by dCK found in activated T cells)
- Not incorporated into DNA (as many other nucleoside analogues)
- Forodesine uptake into cells (ENT1 and ENT2)

Our main competitor!

- Poor oral bioavailability (<10% in human and non-human primates)
- Cardiotoxicity (our experiments)

ANPs (e.g. tenefovir, adefovir) a successful antivirals! Prodrug strategy.

 \mathbf{O}

Synthesis

Modified nucleobases:

Synthesis

Modified nucleobases:

Coupling:

Synthesis

Prepared compounds (classes) - examples

New phosphonate analogues - to explore the PNP active site

PNP active site exploration

HÓ

P(O)(OH)₂

Br

ΗN

JS-379

Human PNP-JS-196

Janeba group

OCB

Dataset	hPNP-JS196
Space group	P21
Cell parameters a, b, c [Å]; α,β,γ [º]	79.12, 185.10, 79.18; 90.00, 119.94, 90.00
Wavelength [Å]	0.918
Resolution [Å]	50-1.8 (18.5-1.8)
Unique reflections	156419 (6131)
Redundancy	3.55 (2.01)
CC1/2	99.7 (44.2)
Completeness [%]	85.8 (45.5)
Rmergea [%]	7.7 (88.9)
Average I/o(I)	13.26 (1.25)
Wilson B [Å2]	29.98
Refinement statistics	
Resolution range [Å]	38.86-1.8 (1.846-1.8)
No. of reflections in working set	154865(6071)
No. of reflections in test set	1565
R value [%]	22.5 (34.8)
R-free value [%]	26.7 (33.1)
RMSD deviation from ideal bond length [Å]	0.01
RMSD deviation from ideal bond angle [°]	1.682
Number of protein atoms	
Number of water molecules	
Number of other non-protein atoms	
Mean B value [Å2] (protein/inhibitor/waters)	27.5
Residues in Ramachandran favored regions [%]	98.64
Residues in Ramachandran allowed regionse [%]	100%
Status	Pre-deposition

X-ray crystallography with human PNP

Comparison: JS-196 JS-554 JS-555 Binding flexibility. His257 flexibility! Could be exploited in future design. X-rays in total: 6 with human PNP

2 with *Mt*PNP

Cell cytotoxicity

	HL60	HeLa S3	CCRF-CEM	HepG2	MOLT-4
Compound	Human promyelocytic leukemia cells	human papilloma virus	acute lymphoblastic leukemia	hepatocellular carcinoma	acute lymphoblastic leukemia
JS31	>10	>10	5.90 ± 0.08	>10	0.638 ± 0.105
JS57	>10	>10	11.6 ± 2.0	>10	>10
JS143	>10	>10	2.56 ± 0.37	>10	1.53 ± 0.7
JS192	>10	>10	21.6 ± 1.35	>10	>10
JS194	>10	>10	0.104 ± 0.005	>10	0.039 ± 0.009
JS195	>10	>10	0.026 ± 0.003	>10	0.380 ± 0.020
JS196	>10	>10	0.034 ± 0.003	>10	0.029 ± 0.009
JS197	>10	>10	0.045 ± 0.006	>10	0.093 ± 0.010
JS218	>10	>10	0.040 ± 0.008	>10	0.043 ± 0.011
JS228	>10	>10	0.123 ± 0.025	>10	0.051 ± 0.009
Forodesine	>10	>10	0.003 ± 0.000	>10	0.003 ± 0.000
Clofarabine	>10	N/A	0.004 ± 0.000	>10	0.004 ± 0.001
Nelarabine	>10	>10	0.206 ± 0.032	>10	3.63 ± 0.78
dGuo	>10	>10	11.0 ± 0.9	>10	10.7 ± 1.6

CCRF-CEM, MOLT-4 – T-cell leukemias

Free phosphonate vs. prodrug

bisamidate

ΗŅ

	Cell viability IC50 (µM)								
Comp	HL-60	HeLa S3	CCRF- CEM	HepG2	MOLT-4	Jurkat			
JS-213	>10	>10	0.491	>10	0.089	2,89			
JS-457	>10	>10	0.036	>10	0.151	0.144			
JS-458	>10	>10	0.033	>10	0.535	0.640			
JS-196	>10	>10	0.033	>10	0.049	0.069			
IMM	>10	>10	0.003	>10	0.004	0.003			
Clofarabine	>10	N/A	0.004	>10	0.004	0.022			

CCRF-CEM, MOLT-4, Jurkat – T-cell leukemias

Chemistry – scale -up

Human plasma stability (Bienta – Enamine Biology Services)

	Compound ID	Time,	Analyte l	Peak Area	Mean Analyte	% Remain.	T _{1/2} ,	Plot		
		min	Inc. 1	Inc. 2	Peak Årea	Mean	min			
0	JS-196	0	2.96E+03	2.93E+03	2.94E+03	100	> 120 (270)	JS-196 Human		
		20	3.19E+03	3.01E+03	3.10E+03	105		100 × 80		
N S		40	2.96E+03	2.82E+03	2.89E+03	98		te 60 te 40 → Mean a 40 → Mean		
O O'Na ⁺ // O'Na ⁺		60	3.11E+03	3.09E+03	3.10E+03	105		20 Incubation №2		
JS-196 ^O		120	3.05E+03	2.91E+03	2.98E+03	101		0 30 60 90 120 Time, min		
) JS-458	0	2.05E+05	2.04E+05	2.04E+05	100	17	JS-458 Human		
		20	9.36E+04	8.61E+04	8.98E+04	44		100 × 80		
		40	3.13E+04	3.36E+04	3.24E+04	16		40 → Mean		
JS-458 0		60	1.40E+04	1.57E+04	1.48E+04	7		0 Incubation №2		
\checkmark^{\diamond}		120	3.81E+03	2.25E+03	3.03E+03	1		0 30 60 90 120 Time, min		
					-					

Mouse plasma stability (Bienta – Enamine Biology Services)

	Compound ID	Time,	Analyte Peak Area		Mean Analyte	% Remain.	T _{1/2} ,	Plot	
		min	Inc. 1	Inc. 2	Peak Årea	Mean	min		
HNATO PHO HNATO PHO HNATO PHO HO HNATO PHO HO HO HNATO PHO HO HNATO PHO HO HNATO PHO HO HNATO PHO HNATO PH	JS-196	0	2.37E+03	2.33E+03	2.35E+03	100	>120 (6170)	JS-196 Mouse	
		20	2.26E+03	2.41E+03	2.34E+03	99		100 월 100 B	
		40	2.36E+03	2.31E+03	2.34E+03	99		E 40 Mean	
		60	2.35E+03	2.25E+03	2.30E+03	98		20 Incubation N22	
ັ JS-196		120	2.26E+03	2.38E+03	2.32E+03	99		0 30 60 90 120 Tim e, min	

- JS-195, JS-196, and IMM high stability in human and mouse plasma, in microsomes too
- Plasma protein binding of **JS-458** is very low (<2%), binding of **JS-196** is high (96-97%)
- cardiomyocyte beating assay JS-196 did not affect NVCM beating rate, peak amplitude or its shape (in contrast to IMM!).

PK study of JS-196 in mouse and rat

Time (h)

Calculated PK parameters (1-compartment model):

		moi	use			rat		
	i.v.	p.o.	i.p**	i.p.**	i.v.	p.o.	i.p.	
AUC	53,4	0,46	54,6	297	92,7	2,43	93,1	
C _{max}	18,4	0,12	30,5	209	26,7	0,48	17,5	ug/ml
T _{max}	0,25	2	0,5	0,25	0,08	1	0,5	h
T _{1/2}	2,56	2,37	0,3	1,84	2,65	1,86	2,47	h
F	100	0,86	102	111	100	2,5	100	%
Dose*	250	250	250	1250	2500	2500	2500	ug
C ₀	17,1				26,7			ug/ml
V _d	14,6				93,7			ml
Cl	3,95				24,5			ml/h

Low oral bioavailability in both species!

Formulations?

*Dose - 10 mg/kg means cca 250 ug per mice and 2500 ug per rat

**i.p. mouse, NGS strain, additional experiment with limited time points

In vivo proof-of-concept studies

- In ovo chick chorioallantoic membrane xenografts Inovotion (CRO)
- T-Lymphoblastic cell line (CCRF-CEM) mouse xenografts MU/FN Brno
- Patient-derived T-ALL mouse xenografts FN Brno/Biocev

🛞 віосех

	CAM model	"Golden standard" xenograft	PDX
host	chicken embryo	mouse	mouse
donor cells	CCRF-CEM	CCRF-CEM	T-ALL patient -derived PBMC
graft technique	upper CAM	intravenous	intrafemoral
dosing schedule	4 doses, every other day, CAM	20 doses, once daily i.p.	21 doses, once daily i.p.
dose per treatment	0,05 mg/kg, 0,5 mg/kg, 5mg/kg	50 mg/kg	50 mg/kg
reference compound(s)	nelarabine, forodesine	none	none
readout	tumor weight, mestastatic infiltration	leukemic cell count (FACS), survival, weight, terminal necropsy - spleen and liver weight, metastatic foci	total WBC count+diff, chimerism, survival, weight, terminal necropsy - organ injury
status	completed	completed	completed

Experimental protocols were approved by the institutional ethics committee.

In vivo proof-of-concept studies

- In ovo chick chorioallantoic membrane xenografts Inovotion (CRO)
- T-Lymphoblastic cell line (CCRF-CEM) mouse xenografts MU Brno
- **Patient-derived T-ALL mouse xenografts** FN Brno/Biocev
- All models used showed some therapeutic potential of JS-196 towards T-ALL leukemias
- Although the antitumor effect seems to be lower than that of forodesine (CAM study), altogether the data prove that PNP inhibition is a viable treatment strategy
- The therapeutic effect could possibly be further enhanced by continuous drug delivery (osmotic pumps) and prolonged treatment (relaps of the disease in PDX study following drug discontinuation at week 8?)

Experimental protocols were approved by the institutional ethics committee.

JS-196 summary

- ~ 100 compounds based on phosphonic acid synthesized.
- Patent granted: WO2021083438 (A1)

JS-196 exhibits:

- Good potency
- Good solubility
- Excellent metabolic & chemical stability
- Human PPB 96%
- Poor permeability CaCo permeability 0.1 x 10⁻⁶ cm/s
- Poor bioavailability (p.o.) Mouse and rat F 0.9% and 2.5%
- Prodrugs did not improve permeability.

JS-196 summary

- ~ 100 compounds based on phosphonic acid synthesized.
- Patent granted: WO2021083438 (A1)

What next?

JS-196 exhibits:

- Good potency
- Good solubility
- Excellent metabolic & chemical stability
- Human PPB 96%
- Poor permeability CaCo permeability 0.1 x 10⁻⁶ cm/s
- Poor bioavailability (p.o.) Mouse and rat F 0.9% and 2.5%
- Prodrugs did not improve permeability.
JS-196 binding position

О

- Improve permeability/bioavailability of compounds
- Increase lipophilicity/pKa of inhibitors
 LogD > 1; pKa > 4
- Main modifications:
 - replacing purine moiety 1.direction
 - replacing phosphonate 2. direction
 - replacing both 3. direction

PNP Project

Replacing phosphonate moiety – 2.direction non-phosphonate analogues

PNP Project

Replacing phosphonate moiety – 2.direction non-phosphonate analogues

Comp	Cell viability IC ₅₀ (μ M)					
	HL-60	HeLa S3	CCRF- CEM	HepG2	MOLT-4	Jurkat
JS-283	>10	>10	1.570	>10	0.065	1.32
JS-303	> 10	> 10	0.027	> 10	0.310	0.200
JS-400	> 10	> 10	0.710	> 10	2.52	2.67
JS-403	> 10	> 10	> 10	> 10	> 10	> 10
JS-399	> 10	> 10	> 10	> 10	> 10	> 10
JS-304	> 10	> 10	1.17	> 10	3.60	3.94
JS-352	> 10	> 10	> 10	> 10	> 10	> 10
JS-404	> 10	> 10	> 10	> 10	> 10	> 10
IMM	>10	>10	0.003	>10	0.004	0.003
Clofarabine	>10	N/A	0.004	>10	0.004	0.022

CCRF-CEM, MOLT-4, Jurkat – T-cell leukemias

Ongoing research

- Improve permeability of compounds
- Increase lipophilicity/pKa of inhibitors
 LogD > 1; pKa > 4
- Main modification replacing phosphonate with carboxylate.
- With subsequent **linker** modifications to increase potency

pKa: 1.35 logD = -1.95

pKa: 3.63 logD = -1.32

Re-design of Our Compounds

- Focus primarily on physico-chemical properties (pKa > 4, logD > 1).
- Transition from phosphonates to carboxylates and neutral molecules.

- JS-625B hPNP IC50 = 0.318 μM CCRF-CEM IC50 = 0.194 μM pKa > 7 logD = 0.75 MW = 321 TPSA = 91
- JS-625B is a small neutral molecule with very good PK properties and good potency
- JS-625B is being further developed

Conclusions

- Human PNP a validated target to treat T-cell malignancies
- Failures of the previously developed PNP inhibitors non-optimal PK properties
- Design & synthesis of potent phosphonate PNP inhibitors: single-digit nM (PNP) & double-digit nM (cells); poor PK properties
- 2 xenograft models developed for preclinical studies (CCRF-CEM and patientdelivered cell lines; two different laboratories) – proof-of- concept
- Development: phosphonates carboxylates/sulfonates <u>neutral molecules</u> (ongoing SAR study, leads) – <u>2nd patent in preparation</u>
- Our focus primarily on development of orally administered therapy

Acknowledgement

- group of Dr. Mertlíková-Kaiserová (biochemical pharmacology)
- group of Dr. Maloy Řezáčová (structural biology)
- FN Brno MU & CEITEC; BIOCEV (patient samples, xenograft studies)
- Purdue University V. J. Watts; biol. testing (mAC)

• Funding

- Institute of Organic Chemistry and Biochemistry (RVO 61388963)
- Ministry of Education, Youth and Sports (MŠMT in Czech) in the program INTER-EXCELLENCE (project LTAUSA18086).
- Technology Agency of the Czech Republic (TN01000013)
- Gilead Sciences, Inc. (Foster City, CA)

IOCB TTO Support Martin Fusek Jana Kenney

