• Rio de Janeiro Brasil
  • 14-18 Novembro 2022

Evaluation of fish quality as a function of the concentration of total volatile bases in tambaqui (Colossoma macropomum) stored under refrigeration at 4°C for 30 days.

Autores

Farias, I.M.R. (IFTO CAMPUS PARAÍSO DO TOCANTINS) ; Viroli, S.L.M. (IFTO CAMPUS PARAÍSO DO TOCANTINS) ; Rodrigues, F.M. (IFTO CAMPUS PARAÍSO DO TOCANTINS) ; Neto, O.C. (IFTO CAMPUS PALMAS)

Resumo

Fish is a perishable product that needs to be stored and refrigerated to maintain quality.Therefore, the evolution of the change in the concentration of total volatile bases in tambaqui stored at ± 4°C for 30 days was evaluated. Determinations for total volatile bases and hydrogenion potential were performed in triplicate and followed the methodology of Instituto Adolfo Lutz. The results were submitted to the Tukey test at the 5% level in the SISVAR version 5.6 program and compared with MAPA Ordinance N°. 185, of May 13, 1997. According to the results, the tambaqui samples showed values for the parameters analyzed in accordance with Ordinance N° 185/1997 and a significant difference (p<0.05) during the period of storage under refrigeration.

Palavras chaves

Quality indicators; Nitrogen; hydrogenic potential

Introdução

Fish is a perishable product and needs refrigerated storage in order to avoid harm to consumer health (SILVA et al, 2021). Improper handling and storage of fish can cause poisoning and infections when consumed (FEITOSA et al., 2017). Tambaqui (Colossoma macropomum) stands out as a great potential for fish farming, appreciated in the North, Midwest and Northeast regions, presenting good zootechnical characteristics and profitability in national and international trade (KUBITZA et al., 2012). After its capture, tambaqui undergoes a series of changes requiring special attention to the sanitary conditions of storage and conservation temperature of the product (GONÇALVES, 2011; MARINHO, 2011; TAVARES; GONÇALVES, 2011). Post-mortem changes suffered by tambaqui such as protein degradation, pH drop, lipid oxidation, production of trimethylamine and low molecular weight volatile bases can cause deterioration, directly affecting the quality and shelf life of the fish (RAMOS, 2013). . Factors such as storage temperature, quality of the ice used and hygiene in handling must be essentially observed in the conservation of tambaqui, as poor handling, storage and transport conditions can accelerate the loss of quality and cause deterioration (TAVARES; GONÇALVES, 2011; MARINHO, 2011). O tambaqui cannot be subjected to a temperature of 4.4 °C for longer than 4 hours after capture, as above this limit, the safe expectation of the product's commercial term due to proteolysis significantly decreases (PRICE, 1997). Given the above and considering that the quality of fish depends on adequate storage, the objective was to evaluate the evolution of the change in the concentration of low molecular weight volatile bases in tambaqui stored under refrigeration at ± 4°C for 30 days.

Material e métodos

Samples of tambaqui (Colossoma macropomum) were selected according to the methodology of Cartonilho and Jesus (2011) at Feira Coberta, located in the Municipality of Paraíso do Tocantins, State of Tocantins, with fish from fish farms in the Middle Valley region. Araguaia. Ten specimens were selected that had an average length of 36.41± 0.80 cm and an average weight of 1177.48± 96.08 g. Biometric analysis of the specimens was performed using a 0.05 mm precision caliper and a scale, with 0.001g. The fish were packed in plastic boxes with ice at a temperature of ± 4 °C and transported to the processing unit of the Federal Institute of Education Science and Technology of Tocantins – IFTO Campus Paraíso do Tocantins, where they were eviscerated. After evisceration, the samples were kept at an average temperature of 4 °C for a period of 30 days. At 0th, 10th, 20th and 30th days, samples of tambaquis stored under refrigeration were collected. The samples were filleted. The fillets produced without skin and spine were ground in a processor until obtaining a homogeneous mass, from which an aliquot was taken for analysis. The physicochemical determinations of the hydrogenic potential and total volatile bases were carried out in triplicate and followed the methodology recommended in the chemical and physical methods for food analysis of the Analytical Standards of the Instituto Adolfo Lutz (IAL, 2008). The results of the physical-chemical analyzes were submitted to the Tukey averages tests at the level of 5% of significance in the variables in the SISVAR program version 5.6 (Ferreira, 2019) and compared with Ordinance No. 185, of May 13, 1997 Ministry of Agriculture , Livestock and Supply - MAPA (BRAZIL, 1997)

Resultado e discussão

Table 1 below presents the results of the parameters total volatile bases (BVT) and hydrogenic potential pH analyzed as established by Ordinance No. 185, of May 13, 1997 (MAPA). According to the results obtained by the physical-chemical analyses, presented in table 1, it appears that the tambaqui samples presented values ​​for the parameters of volatile bases and hydrogenionic potential in accordance with MAPA Ordinance No. 185/1997 and difference significant (p<0.05) during the period of storage under refrigeration. The significant differences can be explained by the post-mortem biochemical reactions in the fish muscle. After capture and slaughter, a reduction in pH occurs due to the extinction of the oxygen supply to the muscle, muscle glycogen is transformed anaerobically to lactic acid through glycolysis, instead of being oxidized to carbon dioxide (CO2) and H2O, giving This leads to a reduction in pH from 7.0 to 6.8 (SILVA, 2014). Bello (1992) in his study with tambaqui highlights that the pH values ​​in the samples stored at 0°C showed slight fluctuations and remained in the range of 6.40-6.97. Under conditions of external aggression, the glycogen stock can be reduced, causing a decline in pH that can vary from approximately 7.0 to 6.0 and increase to 6.6 to 6.7 (MEDEIROS, 2002). The application of conservation methods, such as freezing at -15 ºC and the adoption of good manufacturing practices, from capture to storage, may delay the appearance of total volatile bases, preventing the growth of some enzyme-producing bacteria, favoring the commercial validity period for the product (MARINHO, 2011). The BVT content is a parameter used to assess the quality of fresh and frozen fish (HUSS, 1995).

TABLE 01. Result of noted parameters and reference values of Ordinance



Conclusões

During the storage period of tambaqui under refrigeration, there were no major changes in physical and chemical properties, so we can say that the fish in a refrigerated environment at a temperature of 4°C for a period of 30 days, does not show signs of deterioration and keeps their quality indicators (total and base volatile pH) within the recommended by legislation for fresh fish. Within a period of 30 days under refrigeration at 4°C, this species can be marketed in good conditions for consumption.

Agradecimentos

To God, to the IFTO Paraíso do Tocantins campus

Referências

BELLO, R.A.; RIVAS, W.G. Evaluacion y aprovechamiento de la cachama (Colossoma macropomum) cultivada, como fuente de alimento. In: Organizacion de las Naciones Unidas para la Agricultura y la Alimentacion. Italy, Mexico: FAO, 1992. D.F, n.2, out, 113p

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Portaria N° 185, de 13 de maio de 1997. Regulamento Técnico de Identidade e Qualidade de Peixe Fresco (Inteiro e eviscerado). Diário Oficial da República Federativa do Brasil, Brasília, DF, 1997.

CARTONILHO, M.M. E JESUS, R.S. 2011. Qualidade de cortes congelados de tambaqui cultivado. Pesquisa Agropecuária Brasileira, v. 46, n. 4, p. 344-350. 2011


Silva, M. L. P. B. da. Qualidade do tambaqui (Colossoma macropomum) armazenado em gelo: métodos sensoriais, físico-químicos e microbiológicos. 2014. 60f. Dissertação (Mestrado em Ciência Animal) – Programa de Pós- Graduação em Ciência Animal, Universidade Federal do Maranhão, Chapadinha, 2014. Disponivel em: https://tedebc.ufma.br/jspui/bitstream/tede/1669/2/MarcioSilva.pdf. Acesso em 22 maio. 2022


FEITOSA, G. P. et al. Boas práticas na manipulação de pescado como capaci- tação para manipuladores de pescado de Santarém, Pará, Brasil. Revista Brasileira de Engenharia de Pesca v. 10, n. 1, p. 16-26, 2017.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, Lavras, v. 35, n.6, p. 1039-1042, 2011

GONÇALVES, A.A. Tecnologia do Pescado: Ciência, Tecnologia, Inovação e Legislação. São Paulo :Ed. Atheneu, 608p. 2011

HUSS, H.H. Quality Changes and Shelf Life of Chilled Fish in Quality and quality changes in fresh fish FAO Fisheries Technical Paper 348. 1995

IAL, Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. São Paulo-SP: IAL. 2018

KUBITZA, F.; CAMPOS, J.L.; ONO, E.A.; ISTCHUK, P.I. Piscicultura no Brasil. Estatísticas, espécies, polo de produção e fatores limitantes a expansão da atividade. Panorama da aquicultura. V.22 nº132. Julho/agosto. 2012.

MARINHO, L. S. Critérios para avaliação da qualidade da piramutaba (Brachyplatystoma vaillantti) inteira estocada em gelo. Tese (Doutorado em Higiene Veterinária e Processamento Tecnológico de Produtos de Origem Animal)- Universidade Federal Fluminense, Belém, 2011. Disponivel em: http://higieneveterinaria.uff.br/wp-content/uploads/sites/270/2020/07/leonysoares.pdf. Acesso em 22 maio. 2022

MEDEIROS, S. D. Tecnologia e Inspeção de Pescado e Derivados – Deterioração do Pescado. Qualittas – Instituto de Pós-Graduação. Brasil, 2002. Disponível em: http://www.infinityfoods.com.br/wpcontent/uploads/2012/04/hipoa_pescado_solangemedeiros_2_deterioracao.pdf . Acesso em: 22 maio. 2022.


PRICE, R.J. Compedium of fish and fishery products processing methods, hazards and controls. National seafood HACCP alliance for training and educacion. FDA 1997. Disponivel em: http://www.seafood.edu/haccp/com/compedium. Acesso: maio. 2022

RAMOS, F. de C. P. Caracterização Química, Indicadores Da Qualidade E Estudo Da Cinética De Degradação Do Sous Vide De Tambaqui (Colossoma macropomum). 2013. 92f. Dissertação (Mestrado)- Pós-Graduação em Ciência e Tecnologia de Alimentos da Universidade Federal do Pará, Belém, 2013. Disponivel em: https://ppgcta.propesp.ufpa.br/ARQUIVOS/dissertacoes/2013/Fabiane%20Ramos.pdf. Acesso em 22 maio. 2022

SILVA P. do E. S. da : RODRIGUES, M. D N: PEREIRA, I. E. de S: MENDES, V. R: CAVALCANTE, M de A: FECURY, A. A: DIAS, C. A. G. de M. Avaliação dos caracteres sensoriais de tambaqui (Colossoma macropomum) fresco vendido em feiras livres de Macapá (Amapá, Brazil) por escore qualiquantitativo. Biota Amazônia. v. 11, n. 1, p. 29-32, 2021. DOI: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n1p29-32.

TAVARES, M.; GONÇALVES, A. A. Aspectos Físico-químicos do Pescado. In: Gonçalves, A. A. (Ed.). Tecnologia do Pescado. São Paulo: Atheneu. p. 10-20. cap. 1.2. 2011

Patrocinador Ouro

Conselho Federal de Química
ACS

Patrocinador Prata

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Patrocinador Bronze

LF Editorial
Elsevier
Royal Society of Chemistry
Elite Rio de Janeiro

Apoio

Federación Latinoamericana de Asociaciones Químicas Conselho Regional de Química 3ª Região (RJ) Instituto Federal Rio de Janeiro Colégio Pedro II Sociedade Brasileira de Química Olimpíada Nacional de Ciências Olimpíada Brasileira de Química Rio Convention & Visitors Bureau