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1. Introdução  
 
A captura de dióxido de carbono (CO₂) proveniente de grandes fontes estacionárias é de 

grande relevância, tanto pela possibilidade de sua reutilização quanto pelos benefícios 
ambientais associados, especialmente devido aos crescentes desafios impostos pelas mudanças 
climáticas. Nesse contexto, além do aprimoramento de solventes e adsorventes já disponíveis, 
o desenvolvimento de novos materiais para a separação seletiva do CO₂ aparece como uma 
prioridade na área de captura. 

A celulose é um polissacarídeo complexo e o principal componente estrutural das 
paredes celulares das plantas. É o polímero orgânico mais abundante na Terra1 constituindo 
uma parte significativa do peso seco das plantas, especialmente em madeira, algodão e outros 
materiais vegetais fibrosos. Como biopolímero, a celulose desempenha um papel crucial no 
fornecimento de integridade estrutural e rigidez às plantas, ajudando-as a manter sua forma e 
resistir ao estresse mecânico. Nos últimos anos, a celulose ganhou mais interesse devido à sua 
biocompatibilidade, biodegradabilidade, valor econômico, altas propriedades mecânicas, 
grande área de superfície, não toxicidade e renovabilidade, tornando-se uma alternativa 
ecológica aos materiais sintéticos em muitas aplicações2. No entanto, sua alta cristalinidade 
também o torna insolúvel em água e muitos solventes orgânicos devido à presença de ligações 
de hidrogênio intramoleculares e intermoleculares3. 

Os materiais de celulose e seus derivados estão sendo cada vez mais usados em várias 
aplicações, incluindo a indústria médica e farmacêutica, como curativos, administração de 
medicamentos e aglutinantes de comprimidos; a indústria de papel e celulose; biocombustíveis; 
e bioplásticos. Eles também estão sendo explorados em outras indústrias, como têxteis, 
adesivos, revestimentos, alimentos e produtos biodegradáveis1,2. 

A celulose tem uma ampla gama de aplicações em vários setores devido às suas 
propriedades únicas. Essas aplicações demonstram a versatilidade e a importância da celulose, 
principalmente na busca por práticas mais sustentáveis. Algumas aplicações importantes 
incluem biocombustíveis, bioplásticos, construção, cosméticos e cuidados pessoais (como 
loções, cremes e xampus, onde funciona como espessante, estabilizador e emulsificante), 
indústria alimentícia, nanocelulose, indústria de papel e celulose, produtos farmacêuticos (na 
formulação de comprimidos e cápsulas como aglutinante e enchimento), embalagens 
sustentáveis e têxteis (incluindo algodão, linho e rayon)4. 

Estudos vêm sendo realizados para potencializar as características da celulose e entre 
eles está a sua funcionalização com estruturas iônicas para aplicação em processos de captura 
e transformação de CO2. 

Neste contexto, este estudo tem como objetivo funcionalizar a celulose com o cátion 
amônio quaternário e realizar sua caracterização, além de avaliar o efeito dessa modificação na 
capacidade de captura de CO₂, em comparação com a celulose não funcionalizada. Para tal 
técnicas como Microscopia Eletrônica de Varredura (MEV -FEG), Ressonância Magnética 
Nuclear (RMN), Análise Termogravimétrica (TGA) e a técnica de decaimento de pressão para 
avaliação da capacidade de captura de CO₂ foram empregadas. 
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2. Material e Métodos 
 

Na tabela estão listados todos os solventes e reagentes que foram utilizados para o 
desenvolvimento deste trabalho. 

Figura1: Tabela com os dados dos materiais utilizados. 

Produto Origem Pureza (%) 
Celulose Micro Cristalina Sigma-Aldrich   

Cloreto de 2,3-epoxipropiltrimetilamonio (EPTMAC) Sigma-Aldrich ≥ 90  
Ureia  Synth  99 
NaOH  Dinâmica  98 

Álcool Metílico NEON 99,8  

 

2.1. Preparo da celulose Modificada 
 

Para realizar a modificação da celulose, adiciona-se 3,78 g de celulose em 150 mL de 
uma solução de NaOH 1,5 mol. L-1 contendo 1 g de ureia, resfriasse a mistura a -14 °C por 1 
hora e, em seguida ajustasse a temperatura para -2 °C. Nesta temperatura, deve-se agitar a 
mistura reacional por 10 mim para promover a dissolução da celulose. Logo após a dissolução, 
eleva-se a temperatura para ~25 °C e adicionasse 26,67 g (175,8 mmol) de Cloreto de 2,3-
epoxipropiltrimetilamonio (EPTMAC). Quando todo o EPTMAC for adicionado deve-se 
manter a mistura reacional a 60°C sob agitação por 3 h. Ao final da reação, a mistura deve ser 
vertida em 300 mL de metanol para precipitar CA-Cl. Por último, deve-se lavar os precipitados 
com uma mistura 1:1 de metanol / água destilada para atingir pH neutro e deve-se secar a CA-
Cl a 50°C sob vácuo. 

 

2.2.Caracterização 
 

A Celulose e Celulose Modificada foram caracterizadas por RMN de 13C no estado 
sólido para confirmar a estrutura, microscopia eletrônica de varredura com emissão de campo 
(MEV-FEG) para avaliar a morfologia, análise termogravimétrica (TGA) para avaliar a 
estabilidade e comportamento térmico e foi avaliado a capacidade de sorção dos materiais. 

Os materiais obtidos foram caracterizados por RMN de 13C no estado sólido usando um 
espectrômetro Bruker Advance DRX -400 a 400 MHz  

As análises termogravimétricas (TGA) foram realizadas utilizando um equipamento TA 
Instruments modelo SDT 650. Para as análises foi realizado uma variação da temperatura 
ambiente até 700°C, com uma taxa de aquecimento de 10°C/min em diferentes atmosferas. 

As análises de Microscopia Eletrônica de Varredura com Emissão de Campo (MEV-
FEG) foram realizadas em um equipamento FEI Inspect F50 no modo de elétrons secundários 
(SE). Os filmes foram colocados em um stub cobertos com uma fina camada de ouro. 

A técnica de decaimento de pressão também foi usada para determinar a capacidade de 
sorção de CO2. A célula de câmara-dupla para sorção de gás é similar ao sistema reportado na 
literatura. Uma descrição detalhada do aparelho de sorção e do procedimento de medição 
podem ser encontrados em nossos trabalhos anteriores5,6. As amostras (~1,0g) foram colocadas 
na câmara de sorção e foram desgaseificadas sob vácuo (10-3 mbar) durante 1h a temperatura 
ambiente. Os experimentos de sorção de CO2 foram realizados em á pressão de 3 MPa e 25 °C. 
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3. Resultados e Discussão 
 

3.1.MEV 

 

A morfologia da Celulose não funcionalizada e da Celulose Modificada são mostradas 
na Fig 2. 

Figura 2: Imagens de MEV da Celulose não funcionalizada (A-B); CA-Cl (C-D). 

 

Não foram observadas mudanças significativas na morfologia da superfície das 
amostras modificadas, em comparação com a celulose não funcionalizadas. Porém, uma maior 
aglomeração das fibras pode ser observada após a modificação da celulose. 

 
 
 

3.2.RMN 

Os espectros de RMN de CP-MAS 13C das amostras de Celulose não funcionalizada e 
Celulose Modificada (CA-Cl) são mostrados na Fig 3. 

Figura 3: Espectros de RMN de CP-MAS 13C da celulose e amostras de celulose modificada. 

A B 

C D 
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Para todas as amostras foram observados os sinais característicos de celulose nas regiões 
de 104,5-105,9 ppm atribuído ao C-1 (Carbono), 89,2-83,5 ppm pertencente ao carbono C-4 da 
ligação glicosídica, 71,6 – 75,2 ppm referente ao C-2, C-3 e C-5 do anel celulósico e sinal 62,6 
– 65,4 ppm atribuído ao carbono C-6. A incorporação do cátion amônio na CA-Cl é observada 
na estrutura da celulose, pois é confirmada pelo surgimento de um novo sinal ~55,3 ppm que 
referente ao grupo (CH3)3N+7.  

 
3.3.TGA 

As curvas de TGA da celulose e da CA-Cl são mostradas na Fig 4.  
 
Figura 4: Curvas do TGA e derivada para Celulose não funcionalizada (A; B) e CA-Cl (C; D). 

  

 

Ambas as amostras apresentaram dois eventos térmicos. Para a celulose o primeiro 
estágio (Tinical ~ 30 °C e Tfinal a ~100 °C) é atribuído à água fisicamente absorvida na superfície 
da celulose, enquanto o segundo estágio refere-se à degradação das fibras celulósicas (Tinical ~ 
225 °C e Tfinal a ~600 °C).  Para a CA-Cl, o primeiro estágio com Tinical ~ 30 °C e Tfinal a ~130 

A B 

C D 
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°C, refere-se possivelmente a umidade e solventes residuais presentes nas amostras, já o 
segundo estágio é atribuído à perda do grupo amônio aliado à degradação da estrutura celulósica 
(CA-Cl = Tinical ~ 155 °C e Tfinal a ~600 °C).  

 
3.4.Capacidade de Sorção 

Os resultados experimentais de capacidade de sorção de CO2 para celulose em 
comparação com a celulose modificada é mostrado na Fig 5. 

 

Figura 5: Sorção de CO2 obtida para a Celulose não funcionalizada e CA-Cl. 

 

 

Uma tendência de aumento na capacidade de sorção de CO2 foi observado na celulose 
modificada. A celulose apresenta grupos polares (éter, éster e grupos hidroxila) que possuem 
afinidade com o CO2, no entanto a inserção do cátion amônio na estrutura da celulose promove 
o aumento da interação com o CO2

8–10. O valor de capacidade de sorção de CO2 para a celulose 
foi de 102,4 mgCO2/g a 3 MPa, enquanto para a CA-Cl os valores de sorção obtidos pela 
celulose funcionalizada foi de 257,0 mgCO2/g a 3 MPa, respectivamente. Este comportamento 
indica que a ionização da estrutura celulósica por meio da funcionalização, promoveu uma 
estrutura com maior afinidade ao CO2.    

Em temperaturas e pressões comparáveis, a amostra CA-Cl apresentou capacidade de 
sorção do CO2 superior à de poli (líquidos iônicos) com base de celulose. Por exemplo, para a 
celulose com [CelEt3N][PF6] foi encontrado uma capacidade de sorção do CO2 de 168 mgCO2/g 
a 3 MPa e 25 °C9. 

 
4. Conclusões 

 

Podemos concluir através dos resultados obtidos no presente trabalho, que foi realizada 
a funcionalização da celulose com o cátion amônio quaternário através da análise de 
Ressonância Magnética Nuclear (RMN).  
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Através da análise de MEV, não se observou grandes mudanças na morfologia da 

superfície da amostra de celulose modificada quando comparados com a celulose não 
funcionalizada. Notou-se por meio da análise de TGA uma leve redução na estabilidade térmica 
da celulose após a funcionalização. Em relação a sorção de CO2 observou um aumento 
significativo de 150% na capacidade de sorção da celulose com a funcionalização, evidenciando 
que a inserção do cátion na estrutura da celulose promoveu o aumento da afinidade ao CO2. 

. 
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