

SYNTHESIS, CHARACTERIZATION, AND DFT STUDY OF A COPPER(II)-L-ISOLEUCINATE COMPLEX WITH POTENTIAL BIOLOGICAL ACTIVITY

Carlos G. S. Silva^{1*}, Jailton R. Viana¹, Adenilson O. dos Santos¹, João. G. O. Neto¹, Mateus R. Lage¹

¹ Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão, Brasil, 65.900-410.

*E-mail: cgs.silva@discente.ufma.br

The importance of materials to humanity is well recognized, as evidenced throughout human history up to the present day¹. The development and study of new materials are crucial to meet the demands of contemporary society. Among these, Cu(II) is essential for the human body, corresponding to a metal ion of great importance for the functioning of several enzymes and proteins, binding to DNA molecules, and exhibiting antibacterial, antifungal, and antitumor properties. Complexes formed from transition metal ions present are a promising solution, formed by bonding with ligands like L-isoleucine. They exhibit greater stability, and some ligands allow metal ions, such as Cu(II), to reach the target cell². In this work, our objectives were to synthesize, characterize, and study properties of a Cu(II) complex with L-isoleucine using DFT calculations. Then, the complex was prepared using the slow solvent evaporation method, followed by crystal characterization via XRD, which included the definition of lattice parameters through Rietveld refinement. Finally, a theoretical study of the complex was conducted based on DFT. A solution was prepared in the ratio of 1 mMol of copper chloride to 2 mMol of L-isoleucine. The XRD analyses were performed in the 10° to 50° (2θ) range, with an angular step of 0.02° and a time of 2 s. Rietveld refinement was performed using the GSAS-II software, and the crystal structure was analyzed with the Mercury software. To date, the software Cremcraft has been used to explore the structure of the complex and to generate the corresponding Cartesian coordinate matrix for the computational calculations. Geometry optimization and vibrational frequencies calculations were performed using the PBE1PBE functional and the def2TZVP basis set. The solvation effect was included using the IEFPCM implicit solvation method³. All calculations were performed using Gaussian 16, yielding structural and spectroscopic data in good agreement with experimental results. The indices $R_{wp} = 7.3\%$, $R_p = 5.4\%$, and $S = 1.13$ demonstrate good agreement between the intensities observed in this study and those reported in the literature, confirming the good quality of the refinement and the successful synthesis of the target material. The Gibbs free energy (ΔG) variations of -629.54 (in vacuum) and -194.41 kcal/mol (in water) confirm spontaneous complexation, and the electrophilicity (ω) of the complex of 5.19 eV (in vacuum) and 4.39 eV (in water) indicate a propensity for antitumor activity. Further physicochemical and biological analyses will be performed to investigate potential applications of this material.

Acknowledgments: We are grateful for the financial support from CNPq, CAPES, and FAPEMA, as well as the institutional support from PPGCM and UFMA. This authors acknowledge the LabMMol and LDRX laboratories, and the Digital Research Alliance of Canada | l'Alliance de recherche numérique du Canada through the collaboration of Dr. Stanislav R. Stoyanov, Adjunct Professor, Department of Chemical and Materials Engineering, University of Alberta for providing access to advanced computational resources.

[1] JUNIOR, C. W. D.; RETHWISCH, D. G., John Wiley & Sons. 5. ed. 2012. EUA.

[2] WEEKS, CHARLES M.; COOPER, A.; NORTON, DORITA A., Structural Science, v. 25, 1969, p. 443.

[3] TOMASI J.; MENNUCCI B.; CANCÈS E., Journal of Molecular Structure: Theochem, v. 464, 1999, p. 211.