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Introdução  

O avanço da exploração aeroespacial e o desenvolvimento de veículos movidos por 

reações químicas exigem combustíveis cada vez mais eficientes, sustentáveis e seguros. 

Sistemas de propulsão, como lançadores orbitais, sondas espaciais e minifoguetes acadêmicos, 

demandam propelentes com características específicas, como alta densidade energética, ignição 

facilitada, estabilidade térmica e bom desempenho sob diferentes pressões e temperaturas (Zhao 

et al., 2021). Nesse cenário, o boro (B) destaca-se como elemento estratégico. Seus compostos, 

especialmente os hidretos como o diborano (B₂H₆), demonstram elevado potencial como 

combustíveis de alta energia devido à sua alta liberação de calor na combustão, baixa massa 

molar e estrutura favorável a reações exotérmicas rápidas. Estudos realizados entre 1947 e 1952 

indicaram que o diborano proporcionava impulso específico elevado, com queima limpa e 

eficiente (Lin et al., 2020). 

Compreender o comportamento termoquímico desses compostos em diferentes 

temperaturas é essencial para avaliar sua viabilidade em aplicações aeroespaciais. Parâmetros 

como entalpia (ΔH), entropia (S), energia livre de Gibbs (ΔG) e capacidade calorífica (Cp) são 

fundamentais para prever a espontaneidade das reações, o rendimento energético e as condições 

ideais de estabilidade. A obtenção desses dados por meio de métodos de química 

computacional, especialmente a Teoria do Funcional da Densidade (Density Functional Theory 

– DFT), permite estimativas precisas e seguras, mesmo para reações ainda não exploradas 

experimentalmente, reduzindo custos e riscos operacionais. A análise dessas propriedades em 

função da temperatura amplia a compreensão sobre tendências de estabilidade térmica e 

variações estruturais, contribuindo para o desenvolvimento de propelentes mais eficazes. 

Além do cálculo termoquímico, a interpretação estatística dos dados obtidos é essencial 

para identificar padrões e garantir a robustez da análise. Indicadores como média, desvio 

padrão, erro padrão, mediana, primeiro quartil (Q1) e coeficiente de variação (CV) auxiliam na 

descrição quantitativa do comportamento térmico dos compostos e permitem avaliar sua 

estabilidade e reprodutibilidade ao longo da faixa de temperatura de 25 K a 1000 K. No entanto, 

à medida que aumenta o número de compostos estudados e a complexidade dos dados, a 

interpretação direta torna-se desafiadora. Assim, o uso de técnicas estatísticas multivariadas, 

como a Análise de Componentes Principais (PCA), também conhecida como Principal 

Component Analysis (PCA), é fundamental para reduzir a dimensionalidade dos dados, facilitar 

a visualização de agrupamentos, detectar padrões comuns entre compostos com propriedades 

semelhantes e distinguir entre os sistemas mais ou menos estáveis em condições térmicas 

variáveis (LI et al., 2021). 
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Neste estudo, sete compostos derivados do diborano (BH₂, BH₃, BH₂O, BH₃O, BH₂O₂, 

B₂H₆ e B₂H₆O) são analisados quanto às suas propriedades termodinâmicas, com base em 

cálculos realizados em diferentes temperaturas. Busca-se compreender como essas 

propriedades variam, avaliar seu potencial como combustíveis alternativos de alta energia e 

classificá-los quanto ao desempenho termoquímico. A aplicação combinada dos métodos 

computacionais baseados em DFT com ferramentas de análise estatística descritiva e 

multivariada tem como finalidade oferecer um modelo teórico robusto para a triagem e o 

desenvolvimento de novos combustíveis aeroespaciais. Ao correlacionar os resultados da PCA 

com os dados termoquímicos simulados, pretende-se construir uma base confiável para a 

seleção racional de compostos com maior viabilidade energética e estabilidade térmica, 

apoiando iniciativas voltadas à inovação em tecnologias de propulsão. 

 

Material e Métodos 

As propriedades termodinâmicas dos compostos BH₂, BH₃, BH₂O, BH₃O, BH₂O₂, B₂H₆ 

e B₂H₆O foram obtidas por meio de cálculos de química computacional baseados na DFT. As 

geometrias moleculares foram otimizadas no estado fundamental, seguidas por cálculos de 

frequências harmônicas, com o objetivo de assegurar que os pontos encontrados 

correspondessem a mínimos verdadeiros na superfície de energia potencial. Os dados de 

entalpia (ΔH), entropia (S), energia livre de Gibbs (ΔG) e capacidade calorífica a pressão 

constante (Cp) foram extraídos a partir dos arquivos de saída dos cálculos em um intervalo de 

temperatura entre 25 K e 1000 K. 

Os cálculos foram realizados com o software Gaussian 09, utilizando o funcional híbrido 

B3LYP e o conjunto de base 6-311++G(d,p), amplamente reconhecido pelo bom desempenho 

na modelagem de compostos contendo boro. Os resultados obtidos foram organizados em 

planilhas eletrônicas para facilitar a visualização das variações térmicas de cada propriedade. 

Em seguida, os dados termoquímicos foram submetidos a tratamento estatístico descritivo, com 

cálculo da média, desvio padrão, erro padrão, mediana, Q1 e CV. Esses parâmetros 

possibilitaram avaliar a distribuição e a variabilidade dos dados para cada composto em função 

da temperatura. Para aprofundar a análise e revelar padrões ocultos, foi aplicada a PCA, visando 

reduzir a dimensionalidade dos dados e identificar agrupamentos ou semelhanças relevantes 

entre os compostos. 

A PCA foi executada no software Statistica 8.0, utilizando dados previamente 

padronizados, garantindo comparabilidade entre variáveis com escalas distintas. Foram gerados 

gráficos de escores principais (PC1 × PC2) e gráficos de cargas fatoriais (loadings) para 

visualizar a correlação entre as propriedades termoquímicas e os compostos, facilitando a 

interpretação de tendências térmicas e a distinção entre sistemas mais ou menos estáveis. Essa 

abordagem metodológica híbrida, que alia modelagem molecular e estatística multivariada, 

justifica-se pela necessidade de compreender não apenas os valores absolutos das propriedades, 

mas também suas inter-relações. A combinação entre DFT e PCA fornece uma estrutura robusta 

para avaliar a estabilidade térmica e o potencial energético dos compostos simulados, apoiando 

a seleção racional de combustíveis alternativos voltados à propulsão aeroespacial. 

 

Resultados e Discussão 

A investigação teórica das propriedades termodinâmicas dos compostos derivados do 

diborano, com base na Teoria do Funcional da Densidade (DFT) e em análises estatísticas 
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descritivas e multivariadas, permitiu compreender melhor o comportamento térmico desses 

sistemas e suas implicações como combustíveis de alta energia. Os dados, processados no 

software Statistica 8.0, incluíram média, desvio padrão, erro padrão, mediana, primeiro quartil 

e coeficiente de variação para entropia (S), capacidade calorífica a pressão constante (Cp), 

entalpia (ΔH) e energia livre de Gibbs (ΔG). Essa abordagem revelou padrões ocultos e 

tendências relevantes. 

Tabela 1 – Estatísticas descritivas das propriedades termodinâmicas (média, desvio padrão, erro padrão, 

mediana, primeiro quartil e coeficiente de variação) de Entropia dos compostos analisados (BH₂, BH₃, BH₂O, 

BH₂O₂, BH₃O, B₂H₆, B₂H₆O). 

 Média 
Desvio 

Padrão 

Erro 

Padrão 
Mediana 

Primeiro 

Quatil 

Coeficiente 

de variação 

BH2O 58,05 8,67 8,67 59,63 53,24 14,94% 

BH2O2 66,87 11,16 11,16 68,79 59,98 16,69% 

B2H6O 74,31 15,61 15,61 75,61 63,20 21,01% 

BH3O 60,07 9,49 9,49 61,41 54,38 15,80% 

BH3 52,05 8,04 8,04 53,55 47,90 15,45% 

BH2 49,19 7,41 7,41 50,97 45,77 15,06% 

B2H6 65,73 12,77 12,77 66,59 56,86 19,43% 

Fonte: Elaboração própria a partir dos dados obtidos via Excel. 

Gráfico 1 de dispersão de  entropia o eixo x representa o (PC1) e o eixo y representa (PC2). 
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Fonte: Elaboração própria a partir dos dados obtidos via PCA no software Statistica v.8. 

 

Gráfico 2 de dispersão de pontuação entropia o eixo x representa o (PC1) e o eixo y representa (PC2). 

 
Fonte: Elaboração própria a partir dos dados obtidos via PCA no software Statistica v.8. 

 

A entropia indica o grau de desordem molecular e a liberdade de movimento dos 

sistemas. Os valores aumentaram com a complexidade estrutural dos compostos. BH₂ 

apresentou a menor entropia média (49,19 J·mol⁻¹·K⁻¹), coerente com sua estrutura simples, 

enquanto B₂H₆O apresentou a maior (74,31 J·mol⁻¹·K⁻¹), refletindo maior massa molar e 

liberdade de movimento. O coeficiente de variação variou de 14,94% a 21,01%, indicando 

variabilidade moderada. Compostos com maior entropia tendem a ser mais adaptáveis a 

variações térmicas, favorecendo seu uso como combustíveis. 

Tabela 2 – Estatísticas descritivas das propriedades termodinâmicas (média, desvio padrão, erro padrão, 

mediana, primeiro quartil e coeficiente de variação) de Capacidade de Calor dos compostos analisados (BH₂, 

BH₃, BH₂O, BH₂O₂, BH₃O, B₂H₆, B₂H₆O). 

 Média Desvio Padrão 
Erro 

Padrão 
Mediana 

Primeiro 

Quatil 

Coeficiente de 

variação 

BH2O 15,61 4,12 4,12 16,76 12,72 26,42% 

BH2O2 11,83 2,69 2,69 12,21 9,32 22,77% 

B2H6O 24,16 9,72 9,72 25,71 16,24 40,23% 

BH3O 13,63 4,08 4,08 14,06 9,74 29,93% 

BH3 10,88 2,43 2,43 10,72 8,47 22,30% 

BH2 9,29 1,06 1,06 9,20 8,30 11,45% 

B2H6 20,02 8,37 8,37 20,72 12,41 41,80% 

Fonte: Elaboração própria a partir dos dados obtidos via Excel. 
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Gráfico 3 de dispersão capacidade de calor o eixo x representa o (PC1) e o eixo y representa (PC2). 

 
Fonte: Elaboração própria a partir dos dados obtidos via PCA no software Statistica v.8. 

 

Gráfico 4 de dispersão de pontuação capacidade de calor o eixo x representa o (PC1) e o eixo y 

representa (PC2). 

 
Fonte: Elaboração própria a partir dos dados obtidos via PCA no software Statistica v.8. 

 

A Capacidade Calorífica expressa a quantidade de energia necessária para elevar a 

temperatura de 1 mol do composto em 1 K. B₂H₆O apresentou o maior valor médio (24,15 

J·mol⁻¹·K⁻¹), sugerindo maior estabilidade térmica. BH₂ apresentou a menor Cp (9,28 

J·mol⁻¹·K⁻¹) e o menor coeficiente de variação (11,45%), evidenciando comportamento mais 

previsível. B₂H₆ teve um coeficiente de variação elevado (41,80%), indicando possível 

instabilidade térmica em certas condições. 
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Tabela 3 – Estatísticas descritivas das propriedades termodinâmicas (média, desvio padrão, erro padrão, 

mediana, primeiro quartil e coeficiente de variação) de Entalpia dos compostos analisados (BH₂, BH₃, BH₂O, 

BH₂O₂, BH₃O, B₂H₆, B₂H₆O). 

 Média Desvio Padrão Erro Padrão Mediana 
Primeiro 

Quatil 

Coeficiente 

de variação 

BH2O 19,84 3,50 3,50 19,34 16,90 17,65% 

BH2O2 25,90 4,71 4,71 25,22 21,86 18,20% 

B2H6O 52,00 7,36 7,36 50,40 45,62 14,15% 

BH3O 27,24 4,06 4,06 26,50 23,81 14,89% 

BH3 20,65 3,17 3,17 20,18 18,03 15,38% 

BH2 13,00 2,70 2,70 12,77 10,81 20,76% 

B2H6 46,39 6,04 6,04 44,96 41,21 13,02% 
Fonte: Elaboração própria a partir dos dados obtidos via Excel. 

Gráfico 5 de dispersão de entalpia o eixo x representa o (PC1) e o eixo y representa (PC2). 

 
Fonte: Elaboração própria a partir dos dados obtidos via PCA no software Statistica v.8. 

 

Gráfico 6 de dispersão de pontuação entalpia o eixo x representa o (PC1) e o eixo y representa (PC2). 

 
Fonte: Elaboração própria a partir dos dados obtidos via PCA no software Statistica v.8. 
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A entalpia média estima o conteúdo energético total das moléculas. B₂H₆O (52,00) e 

B₂H₆ (46,39) mostraram os maiores valores, associados a múltiplas ligações B–B e B–O. Isso 

os torna candidatos a combustíveis de alta energia. BH₂ teve a menor entalpia (13,00), refletindo 

sua simplicidade estrutural. B₂H₆ apresentou menor variabilidade (CV = 13,02%), o que sugere 

maior previsibilidade térmica. 

 

Tabela 4 – Estatísticas descritivas das propriedades termodinâmicas (média, desvio padrão, erro padrão, 

mediana, primeiro quartil e coeficiente de variação) de Energia Livre de Gibbs dos compostos analisados (BH₂, 

BH₃, BH₂O, BH₂O₂, BH₃O, B₂H₆, B₂H₆O). 

 Média Desvio Padrão Erro Padrão Mediana 
Primeiro 

Quatil 

Coeficiente de 

variação 

BH2O -11,96 17,20 17,20 -10,48 -26,08 -143,84% 

BH2O2 -11,10 19,83 19,83 -9,17 -27,32 -178,72% 

B2H6O 9,92 22,00 22,00 12,60 -7,83 221,71% 

BH3O -5,84 17,78 17,78 -4,20 -20,38 -304,37% 

BH3 -7,92 15,45 15,45 -6,59 -20,60 -194,92% 

BH2 -13,91 14,63 14,63 -12,71 -25,97 -105,21% 

B2H6 9,47 19,42 19,42 11,67 -6,23 205,06% 

Fonte: Elaboração própria a partir dos dados obtidos via Excel. 

Gráfico 7 de dispersão de energia livre de gibbs o eixo x representa o (PC1) e o eixo y representa (PC2). 

 
Fonte: Elaboração própria a partir dos dados obtidos via PCA no software Statistica v.8. 
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Gráfico 8 de dispersão de pontuação energia livre de gibbs o eixo x representa o (PC1) e o eixo y representa 

(PC2). 

 
Fonte: Elaboração própria a partir dos dados obtidos via PCA no software Statistica v.8. 

 

A ΔG é crucial para avaliar a viabilidade de reações. BH₂O (–11,95) e BH₂O₂ (–11,09) 

tiveram valores negativos, sugerindo reações espontâneas, favoráveis a aplicações energéticas. 

Já B₂H₆O e B₂H₆ apresentaram ΔG positivos (+9,92 e +9,47), indicando necessidade de energia 

externa. BH₃O teve o maior CV negativo (–304,37%), indicando alta instabilidade com a 

temperatura. Compostos com grande variabilidade exigem controle rigoroso para uso seguro. 

Compostos mais complexos, como B₂H₆O e B₂H₆, mostram desempenho energético 

superior, mas maior variabilidade térmica. Compostos mais simples, como BH₂ e BH₃, 

oferecem menor rendimento, mas maior estabilidade. A Análise de Componentes Principais 

(PCA) revelou agrupamentos com base em ΔH, ΔG, S e Cp, permitindo identificar compostos 

mais promissores para uso como propelentes. Os dados obtidos reforçam o potencial dos 

hidretos de boro como base para combustíveis alternativos, aplicáveis em contextos 

aeroespaciais e energéticos. 

 

Conclusões 

Este estudo realizou uma análise aprofundada das propriedades termodinâmicas de 

compostos derivados do diborano, abrangendo as grandezas entropia (S), capacidade calorífica 

(Cp), entalpia (ΔH) e energia livre de Gibbs (ΔG). Utilizando dados calculados em diferentes 

temperaturas e tratados estatisticamente por meio de análise descritiva e análise de componentes 

principais (PCA), foi possível identificar quais compostos apresentam maior potencial para 

aplicação como combustíveis aeroespaciais. Destacaram-se BH₂O e BH₂O₂, que exibiram 

valores negativos de ΔG, indicando maior espontaneidade em processos reacionais. Já B₂H₆O 

e B₂H₆ apresentaram as maiores entalpias, reforçando seu alto conteúdo energético, mas com 

necessidade de controle operacional devido à instabilidade térmica em determinadas faixas de 

temperatura. A avaliação dos oito compostos estudados (BH₂O, BH₂O₂, B₂H₆O, BH₃O, BH₃, 

BH₂, B₂H₆ e BH₂O) revelou que BH₂O e BH₂O₂ combinam espontaneidade energética, valores 

moderados de entropia e Cp, favorecendo seu uso em condições controladas. Em contrapartida, 

BH₃O e B₂H₆O, embora energéticos, apresentaram comportamento térmico menos previsível. 

A PCA demonstrou-se essencial para sintetizar a complexidade dos dados e visualizar padrões 
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de agrupamento, evidenciando que compostos com maior S e Cp tendem a ocupar regiões 

semelhantes no plano de componentes, enquanto os mais estáveis situam-se próximos ao centro. 

Conclui-se que a integração entre métodos computacionais e estatísticos representa uma 

estratégia robusta para seleção racional de combustíveis alternativos. Entre os compostos 

avaliados, BH₂O e BH₂O₂ destacam-se como os mais promissores, reunindo desempenho 

energético, estabilidade térmica e segurança operacional, configurando-se como candidatos 

viáveis para futuros propelentes eficientes. 
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