

EFEITO DA SONICAÇÃO E SAPONIFICAÇÃO DA CERA NA COR E OPACIDADE DE FILMES MISTOS DE FÉCULA DE MANDIOCA, CERA DE ABELHA E GLICEROL

Maria I. S. de Sousa¹; Rivaldan da S. Ferreira¹; Edna M. M. Aroucha¹; Francisco K. G. dos Santos¹; Ricardo H. de L. Leite¹

1 Universidade Federal Rural do Semi-Árido, Centro de Engenharias, Av. Francisco Mota, 572 - Bairro Costa e Silva, Mossoró RN / CEP: 59.625-900

Palavras-Chave: bioplástico, amido, biopolímero.

Introdução

Com a velocidade do mundo moderno e a necessidade de praticidade no dia a dia, as embalagens plásticas são bastantes utilizadas, pois protegem os alimentos e são fáceis de manusear. Os materiais poliméricos usados para embalagens plásticas apresentam vantagens como baixo peso, baixo custo e elevada resistência mecânica e química, por isso sua versatilidade. Por outro lado, sabe-se que são responsáveis por muitos problemas ambientais, devido ao seu descarte inadequado (SOUSA et al, 2019). Há alguns anos a preocupação com o meio ambiente tem aumentado, já que materiais poliméricos convencionais apresentam degradação natural muito lenta e se acumulam nos ecossistemas (PARRA et al., 2004).

Como alternativa aos filmes plásticos de origem sintética surgem os filmes bioplásticos. Esses são produzidos de materiais biodegradáveis e que não provocam danos ao meio em que se degradam (TALÓN et al., 2016). O principal objetivo da utilização dos filmes bioplásticos é a substituição de produtos derivados a partir de polímeros sintéticos. Tais filmes podem ser aplicados em diversos setores industriais, entre estes: embalagens em geral, suportes, como cobertura para alimentos, etc. (KUORWEL et al., 2015).

Filmes comestíveis produzidos com biopolímeros podem ser uma alternativa eficiente para o prolongamento da vida útil dos alimentos. Esses filmes podem ser utilizados como finas camadas de materiais aplicados nos alimentos, que agem como uma barreira ao ambiente externo, protegendo produtos alimentares e estendendo sua vida útil (FAKHOURI et al., 2015). É comum empregar féculas de mandioca como matéria-prima principal na fabricação de biofilmes comestíveis. Isso se deve à sua eficácia como barreira protetora entre o alimento e o ambiente, reduzindo a perda de água (LEMOS et al., 2007). Quando convertida em filme, a fécula pode ser usada para revestir frutas e legumes, prolongando a durabilidade dos produtos após a colheita e conferindo-lhes um aspecto mais brilhante e atraente aos olhos dos consumidores (PETRIKOSKI, 2013).

Geralmente, os filmes produzidos a partir de biopolímeros como a fécula de mandioca, possuem características frágeis e aspecto quebradiço, logo se faz necessária a utilização de agentes plastificantes, como o glicerol, com a intenção de reduzir as forças interativas entre as cadeias de polímeros (NARKCHAMNAN et al., 2013). Além disso, a natureza hidrofílica dos polímeros de origem biológica força à utilização de substâncias hidrófobas como a cera de abelha para aumentar suas propriedades de barreira ao vapor de água. Porém, a adição de ceras a uma matriz biopolimérica é dificultada pela imiscibilidade existente entre ambas. A cor e a opacidade de filmes mistos de fécula de mandioca e cera de abelha podem ser aumentadas quando da incorporação do material hidrófobo na matriz da fécula. No intuito de melhor

incorporar a cera à matriz de um biopolímero podem ser empregados tensoativos e o aporte de energia, na forma de agitação mecânica ou ultrassônica.

Partindo dessas considerações, neste estudo foram desenvolvidas formulações para filmes de fécula de mandioca que incluíram a adição de cera de abelha em diferentes percentuais de saponificação e o emprego de ultrassons em diferentes tempos de sonicação para a homogeneização das formulações. Buscou-se determinar o efeito destes fatores na cor e opacidade dos filmes de fécula de mandioca obtidos.

Material e Métodos

- a) Materiais Foi utilizada fécula de mandioca comercial (Primícias do Brasil S/A) e cera de abelha obtida de produtores locais. A cera foi saponificada por reação com hidróxido de sódio de acordo com o percentual requerido, tomando-se o índice de saponificação da cera como referência para se calcular a quantidade de base a ser utilizada. Foram também utilizados glicerol P.A. (VETEC) e água destilada. Para a homogeneização da mistura filmogênica foi utilizado o banho ultrassônico da marca UNIQUE/Brasil, modelo USC-800ª, com frequência US de 40kHz.
- b) Métodos Foi utilizada uma concentração de 2,0 % de matéria seca (cera de abelha, glicerol e fécula de mandioca comercial) em água destilada, utilizada como solvente. A concentração de cera de abelha nas misturas filmogênicas foi fixada em 30 % do teor de matéria seca para todos os filmes produzidos. O percentual de cera saponificada foi variado em três níveis 0%, 50% e 100%. A massa de mistura filmogênica utilizada foi de 60 g.
- b.1) Obtenção dos filmes mistos de fécula e cera Inicialmente foram pesados a fécula de mandioca e o glicerol (70% da mistura filmogênica, sendo 20% deste total correspondente ao glicerol), em seguida foi adicionada a água destilada, levando-se a mistura para aquecimento e agitação. Em paralelo foi pesada a cera de abelha que foi aquecida para total fusão do material, esse mesmo material recebeu a mistura de água destilada, fécula de mandioca e glicerol, ainda sob agitação, até completa gelatinização da fécula. Após esse processo a mistura foi levada para um banho ultrassônico para a homogeneização da mistura em diferentes tempos, logo em seguida, a mistura foi despejada em formas de acrílico (15 cm x 15 cm) e colocadas para secar em bancada por 24h. Após às 24h iniciais, as formas foram levadas para a estufa a 40°C até a secagem completa.
- b.2) Composição dos filmes e tempos de sonicação As composições dos filmes e os tempos de sonicação a qual as misturas filmogênicas foram submetidas são mostradas na Tabela 01 para cada ensaio (filme) realizado, perfazendo um total de nove ensaios.

Tabela 01: Concentrações dos componentes das misturas filmogênicas.

FILME Nº	TEMPO DE SONICAÇÃO (min)	¹CERA NATURAL (%)	¹CERA SAPONIFICADA (%)	² GLICEROL (%)	² FÉCULA DE MANDIOCA (%)
1	0	0	0	20	80
2	0	100	0	20	80
3	60	100	0	20	80
4	60	0	100	20	80
5	0	50	50	20	80
6	30	100	0	20	80
7	60	50	50	20	80
8	30	0	100	20	80
9	30	50	50	20	80
% de matéria seca nas misturas filmogênicas		% total de cera na matéria seca		% de glicerol na matéria seca	% de fécula na matéria seca
2,0		30		14	56

1% na fração hidrofóbica da matéria seca

2% na fração hidrofílica (fécula + glicerol) da matéria seca;

- c) Caracterização dos filmes de fécula de mandioca e cera de abelha Os filmes obtidos foram caracterizados segundo as técnicas a seguir:
- c.1) Opacidade e cor As análises de opacidade e cor foram realizadas de acordo com Oliveira (2017). Foi utilizado utilizando um colorímetro portátil (Konica Minolta Sensing Inc. Japan) calibrado com fundo branco padrão e preto padrão. Para a determinação da opacidade foi utilizada a equação:

 $Op = OpB/OpW \times 100$

Onde:

OpB: opacidade do filme contra o fundo escuro; *OpW*: opacidade do filme contra o fundo branco.

Resultados e Discussão

Os parâmetros de cor e a opacidade dos filmes em função do percentual de cera de abelha saponificada e do tempo de sonicação empregados estão apresentados na Tabela 02.

A opacidade dos filmes é uma propriedade crítica se o filme é usado como um revestimento de superfície de alimentos. Filmes transparentes permitem uma melhor visualização do alimento pelo consumidor. O Filme 6 com maior concentração de cera saponificada com 30 min de sonificação apresentou a menor valor de opacidade sendo ele de 10,2%, enquanto o Filme 4 com tempo de sonicação igual a 60 min e concentração de cera saponificada igual a 0% apresentou o maior valor de opacidade de 48,5 %.

Tabela 02: Resultados de cor e opacidade dos filmes.

EU NAE	TEMPO DE	CERA	Parâmetros de cor			Opacidade
FILME Nº	SONICAÇÃO (min)	SAPONIFICADA (%)	L*	a*	b*	%
1	0	0	67,9	3,3	10,8	20,7
2	0	0	72,7	3,1	13,0	12,3
3	60	0	73,5	3,2	11,9	31,1
4	60	100	71,6	3,4	9,9	48,5
5	0	50	69,7	2,9	10,9	29,8
6	30	0	73,0	3,2	12,6	10,2
7	60	50	72,1	2,4	10,7	35,3
8	30	100	72,5	2,4	9,6	18,0
9	30	50	71,9	3,2	10	21,6

Em relação à cor, foram utilizados os parâmetros L*, a* e b* para a análise. Os efeitos do tempo de sonicação e porcentagem de saponificação da cera para o parâmetro <u>L</u> apresentou um aumento quando o tempo de sonicação e porcentagem de cera saponificada aumentam. Para o parâmetro a* de cor em relação aos efeitos de tempo de sonicação e porcentagem de cera saponificada não apresentou variação significativa. Em contrapartida, para os valores de b* houve aumento com a porcentagem de cera saponificada e leve diminuição com o tempo de sonicação.

Conclusões

Conclui-se que com o aumento no tempo de sonicação, a opacidade dos filmes sofre diminuição até certo tempo, mas em tempos maiores passa a aumentar devido a formação de partículas de cera que se aglutinam ao longo do tempo de sonicação. Para o teste de cor, observou-se que a maior variação ocorreu devido ao percentual de cera saponificado na composição dos filmes.

Referências

FAKHOURI, F. M. et al. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of 70 refrigerated Red Crimson grapes. **Postharvest Biology and Technology**, v. 109, p. 57–64, 2015.

KUORWEL, K. et al. Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. **Comprehensive Reviews in Food Science and Food Safety**, v. 14, n. 4, p. 411-430, 2015.

LEMOS, O. L. et al. Utilização de biofilme comestível na conservação de pimentão 'Magali R' em duas condições de armazenamento. **Bragantia**, v.66. n.4, 2007.

NARKCHAMNAN, S.; SAKDARONNARONG, C. Thermo-molded biocomposite from cassava starch, natural fibers and lignin associated by laccase-mediator system. **Carbohydrate Polymers**, [s. l.], v. 96, p. 109–117, 2013.

PARRA, D. F. et al. Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers, 58 (4), p.475 - 481,2004.

PETRIKOSKI, A. P. Elaboração de biofilmes de fécula de mandioca e avaliação do seu uso na imobilização de caulinita intercalada com ureia. Dissertação de Mestrado em Tecnologia de Processos Químicos e Bioquímicos - Universidade Tecnológica Federal do Paraná, PR, Brasil. (18p.) 2013.

SOUZA, A. C.; OLIVEIRA, F.L.M. **Materiais biodegradáveis de fécula de mandioca reforçados com nanopartículas de argila e nanofibras de celulose**. Dissertação — Universidade Federal do Triangulo Mineiro, MG, Brasil. 2019.

TALÓN, E. et al. Development of edible films and coatings from alginates and carrageenans. **Carbohydrate Polymers**, v. 137, p.360-374, 2016.