

Estudos de QSAR e *Docking* para a busca de inibidores da GSK3β visando ao tratamento do Diabetes

Kleiton L. O. Souza¹; Humberto F. Freitas^{1,2}; Samuel S. R. Pita¹

- 1. Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia (UFBA), Salvador-BA
- 2. Núcleo de Pesquisa em Biomoléculas (NuPeqBio), Universidade Estadual de Feira de Santana (UEFS), Bahia, Brasil

Palavras-Chave: GSK3β, QSAR, Catecois, triagem virtual

Introdução

O diabetes é uma doença metabólica caracterizada por níveis elevados de glicose no sangue que causa graves complicações resultando em 1,5 milhão de mortes [1]. A glicogênio sintase cinase-3 beta (GSK3β) regula os níveis de glicose através da desfosforilação da glicogênio sintase (GS) levando a diminuição da síntese de glicogênio no figado e nos músculos [1,2,3,7]. Desta forma, os inibidores da GSK-3β aumentam a sensibilidade à insulina, a síntese de glicogênio e o metabolismo da glicose nos músculos esqueléticos [2,3], sendo potenciais hipoglicemiantes. Modelos bidimensionais descrevendo a relação quantitativa entre a estrutura e a atividade biológica (QSAR 2D) de uma série de inibidores da GSK3β com ação antidiabética foram previamente descritos [8]. Neste trabalho, empregamos o melhor modelo de QSAR 2D para prever a atividade biológica de uma série de catecóis (n=433). Posteriormente, empregou-se o *Docking* Molecular para prever suas interações e energia de afinidade com a GSK3β (PDB ID: 1Q5K, [8]).

Material e Métodos

Os catecois (n = 433) foram obtidos do banco de estruturas do prof. Dr. Ramon El-Bachá (ICS - UFBA) e tiveram suas estruturas otimizadas no Sybyl-X 2.1 [4] utilizando o método de PM3 [4] e as cargas MOPAC [4]. A partir das estruturas otimizadas, 13 descritores selecionados com base no modelo QSAR final (Figura 2) foram calculados no programa Dragon v. 5.5 e utilizados para determinar os valores de h (*leverage*) dos compostos, bem como suas atividades preditas [9] a fim de construir o gráfico de Insubria [6].

Os compostos dentro dos limites do gráfico de Insubria (h* = 0,42) e valores preditos de pIC50 > 7,0 foram selecionados para a etapa de *Docking*. Esta foi realizada no GOLD [5], empregando a função de pontuação ASP na estrutura cristalográfica da GSK3β (PDB ID:1Q5K, [8]) utilizando as coordenadas do sítio ativo (X = 23,99; Y = 22,82; Z = 8,88) e o pH=7,5 [10]. A título de comparação, empregou-se 96 inibidores antidiabéticos da classe das aminopirazinas, benzimidazol, indirubinas, pirazinas, pirimidinas, purinas e quinolonas avaliados experimentalmente [10,11,12,13,14,15,16,17].

Resultados e Discussão

Aplicou-se o modelo QSAR-2D gerado previamente [8], cujas variáveis estão descritas na figura 2, para prever a atividade biológica e valor de *leverage* dos catecois como potenciais inibidores da GSK3 β . Para isso, utilizou-se dois critérios de seleção: $7,0 \le pIC50 \le$

9,0 , a fim de garantir a escolha dos catecois mais promissores e $0 \le leverage \le 0,42$, pois estavam dentro do domínio de aplicabilidade do modelo, trazendo maior confiança nas predições. Esses critérios foram fundamentais para a exclusão de moléculas menos potentes ou com predições menos confiáveis, resultando numa seleção final de 181 compostos com maior potencial inibitório da GSK3 β (Figura 3)

A escolha do GOLD [5] com a função ASP para o *Docking* deve-se ao resultado de validação (AUC= 0,79; EF1= 8,41; EF5= 5,0; RIE= 425 e BEDROC= 25,74), demonstrando que este programa diferencia uma molécula ativa de um *decoy* (falso positivo) em comparação a outros programas e/ou funções de classificação com um forte enriquecimento dos compostos ativos entre os primeiros classificados (Tabela 1), refletindo na eficiência do método de *Docking* no reconhecimento rápido (*early recognition*) de ligantes ativos num grande conjunto de dados. Além disso, confirma-se a capacidade do *Docking* em priorizar rapidamente os compostos mais promissores.

Os 96 inibidores da enzima GSK3 β apresentaram uma faixa de pontuação no *Docking* entre 23,69 e 46,69 e com 4,5 \leq pIC50 \leq 8,8 (Figura 5). Esses valores indicam boa afinidade de interação e potente inibição em relação à GSK3 β .

Comparando estes dados com os catecóis seus valores de pIC50 preditos pelo QSAR 2D estavam entre 7,59 e 8,99 para os 20 melhores catecóis (Tabela 2). Ou seja, no estrato superior de pIC50 quando comparado aos inibidores avaliados experimentalmente. Os valores de *Docking* variam entre 13,72 e 35,52, abaixo das energias dos inibidores experimentais. Isso sugere que, apesar de os catecóis apresentarem uma boa previsão de atividade, a afinidade de interação predita no *Docking* pode ser inferior em alguns casos. Ainda assim, alguns catecóis alcançam valores comparáveis aos inibidores experimentais indicando a possibilidade de uma interação robusta com o sítio ativo da GSK3β (Tabela 2 e Figura 5).

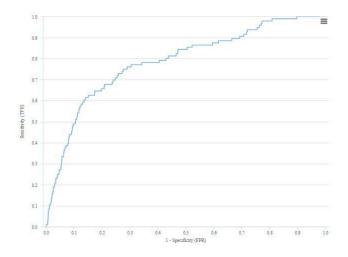


Figura 1. Curva de ROC do Gold ASP

	AUC	EF1	EF5	RIE	Bedroc
AutoDock	0.75	6,3	3,5	310	19
ChemPLP	0.75	7,3	5	371	22
Goldscore	0.61	1,0	0,6	86	5
Chemscore	0.72	5,2	3,1	251	15
ASP	0.78	8,4	5	425	26
Vina	0.77	6.3	3,5	323	20
DockThor	0.43	1.1	1	111	7

Tabela 1. Dados de validação do *Docking* dos inibidores da GSK3β (n=96, [8]) utilizando os programas GOLD [5], AutoDock, Vina e DockThor. **AUC**: Área Sob a Curva ROC; **EF1**: Fator de Enriquecimento a 1%; **EF5**: Fator de Enriquecimento a 5%; **RIE**: Recíproco da Melhoria Esperada; **Bedroc**:Discriminação Aprimorada de ROC por Boltzmann.

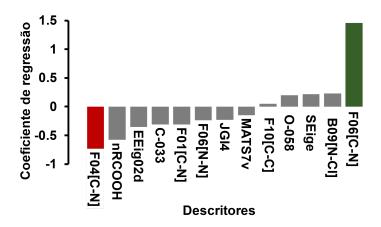
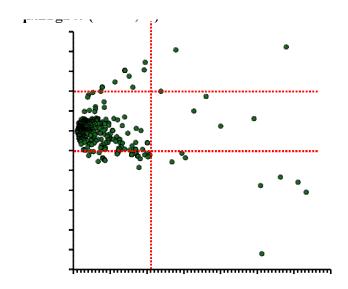



Figura 2. Descritores e Coeficiente de Regressão

Figura 3. Gráfico de Predição e os Critérios de Seleção do Leverage e pIC50. Distribuição dos catecóis em relação ao leverage no eixo X e pIC50 no eixo Y. A área destacada em vermelho representa os critérios de seleção adotados, com leverage $\leq 0,42$ e pIC50 entre 6 e 9, delimitando os compostos promissores para posterior análise de Docking.

Catecóis	pIC50 predito	Leverage	GOLD_ASP	Catecóis	pIC50 predito	Leverage	GOLD_ASP
MFCD00209849	8.99	0.2	23.188	MFCD00153795	7.97	0.1	30.927
MFCD00096501	8.99	0.5	31.462	MFCD00106232	7.97	0.1	24.073
MFCD00133902	8.93	0.1	23.570	MFCD00167999	7.70	0.3	35.315
MFCD00133900	8.80	0.1	22.284	MFCD00086375	7.64	0.1	22.879
MFCD00133899	8.69	0.1	20.828	MFCD00022269	7.61	0.2	13.724
MFCD00210839	8.46	0.2	28.858	MFCD00016589	7.61	0.1	20.391
MFCD00209864	8.20	0.1	28.731	MFCD00133381	7.61	1.0	27.672
MFCD00034082	8.18	0.2	17.611	MFCD00017302	7.60	0.1	18.625
MFCD00209865	8.11	0.1	29.245	MFCD00119041	7.60	0.1	29.069
MFCD00022273	8.03	0.1	22.948	MFCD00017680	7.59	0.1	20.115

Tabela 2. 20 Melhores Catecóis com pIC50 preditos e com o escore de predição de interação proteína-catecóis

Figura 4. Estruturas dos três catecóis selecionados com melhores resultados com boa previsão de atividade e a afinidade de ligação predita pelo Docking como potenciais inibidores da GSK3β. I- MFCD00096501; II- MFCD00167999; III- MFCD00153795.

Inibidores Conhecidos da GSK3β Investigados Experimentalmente

Antidiabéticos na GSK3 β Faixa do Score GOLD ASP Faixa do pIC50 96 Inibidores 23.688 \leq Score \leq 46.694 4,51 \leq pIC50 \leq 8,8

Figura 5. Inibidores Experimentais de GSK3β para Comparação de Atividade

Conclusões

O modelo QSAR 2D foi aplicado aos catecóis, resultando na identificação de 181 compostos promissores. Embora o *Docking* realizado com o GOLD [5] utilizando a função de pontuação ASP tenha apresentado baixa correlação com os valores preditos pelo QSAR, a análise combinada permitiu a seleção dos 20 catecóis mais promissores com base em múltiplos critérios (Tabela 2 e Figura 4). Esses catecóis demonstraram um bom potencial inibitório, especialmente aqueles com valores de pIC50 mais altos e energias próximos aos inibidores experimentais. No entanto, ajustes estruturais são recomendados para otimizar ainda suas afinidades de interação. Assim, a combinação de QSAR e *Docking* é uma estratégia valiosa, mas a integração precisa entre as duas metodologias é necessária para aprimorar a triagem de novos inibidores da GSK3β de forma a contribuir para o desenvolvimento de terapias mais eficazes no tratamento da Diabetes.

Agradecimentos

CAPES, FAPESB, CNPq, PIBIC-UFBA, PERMANECER-UFBA.

Referências

- 1. WHO-World Health Organization. Diabetes. Available from: https://www.who.int/health-topics/diabetes#tab=tab_1
- 2. BHAT, Ratan et al. Insights estruturais e efeitos biológicos do inibidor específico da glicogênio sintase quinase 3 AR-A014418. Revista de Química Biológica, v. 278, n. 46, p. 45937-45945, 2003.
- 3. Caterina et al. The implication of glycogen synthase kinase 3 in diabetes-associated islet inflammation. **J. Endocrinol**. 244, 2020.
- 4. Certara USA, Inc. SYBYL X 2.0 Molecular Modeling Software. Princeton, NJ, USA: Certara, 2023. Disponível em: https://www.certara.com/software/sybyl-x/.
- 5. **GOLD Protein-Ligand Docking Software**. Cambridge, United Kingdom: Cambridge Crystallographic Data Centre, versão 5.0, 2023. Disponível em: https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/.
- 6. NUNES, C. A. et al. Chemoface: a novel free user-friendly interface for chemometrics. Journal of the Brazilian Chemical Society, Campinas, v. 23, n. 11, p. 2003-2010, 2012.
- 7. Ramurthy, S., et al. Discovery and optimization of novel pyridines as highly potent and selective glycogen synthase kinase 3 inhibitors. **Bioorg Med Chem Lett.**, 30 (4), 126930, 2020.
- 8. SOUZA, Kleiton L. O.; FREITAS, Humberto F.; PITA, Samuel S. R. QSAR Studies on Glycogen Synthase Kinase-3 beta (GSK3β) Inhibitors Applied for Diabetes Mellitus Treatment. 11th Brazilian Symposium on Medicinal Chemistry, Salvador, Bahia, Brasil, 2023.
- 9. TALAMO, M.; GAVAN, P.; AFANTITIS, A.; MELAGRACHI, N. Dragon 5.5 Software for

- molecular descriptor calculation. Milano: Kode srl, 2023. Disponível em: https://chm.kode-solutions.net/products_dragon.
- 10. LOZINSKAYA, N. A.; BABKOV, D. A.; ZARYANOVA, E. V.; et al. Synthesis and biological evaluation of 3-substituted 2-oxindole derivatives as new glycogen synthase kinase 3β inhibitors. Bioorganic & Medicinal Chemistry, v. 27, n. 9, p. 1804-1817, 2019.
- 11. LEE, S. C. et al. Structure-activity relationship of the 7-hydroxy benzimidazole analogs as glycogen synthase kinase 3β inhibitor. Bioorganic & Medicinal Chemistry Letters, v. 22, n. 5, p. 1891-1894, 2012.
- 12. LIU, Y. A. et al. A Dual Inhibitor of DYRK1A and GSK3β for β-Cell Proliferation: Aminopyrazine Derivative GNF4877. ChemMedChem, v. 15, n. 16, p. 1562-1570, 2020.
- 13. PEAT, A. J. et al. Novel GSK-3 inhibitors with improved cellular activity. Bioorganic & Medicinal Chemistry Letters, v. 14, n. 9, p. 2127-2130, 2004.
- 14. RAMURTHY, S. et al. Discovery and optimization of novel pyridines as highly potent and selective glycogen synthase kinase 3 inhibitors. Bioorganic & Medicinal Chemistry Letters, v. 30, n. 4, p. 126930, 2020.
- 15. SARASWATI, A. P. et al. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. European Journal of Medicinal Chemistry, v. 144, p. 843-858, 2018
- 16. SETO, S. et al. Quinolone derivatives containing strained spirocycle as orally active glycogen synthase kinase 3β (GSK-3β) inhibitors for type 2 diabetics. Bioorganic & Medicinal Chemistry, v. 20, n. 3, p. 1188-1200, 2012.
- 17. VADIVELAN, S.; SINHA, B. N.; TAJNE, S.; JAGARLAPUDI, S. A. Fragment and knowledge-based design of selective GSK-3beta inhibitors using virtual screening models. European Journal of Medicinal Chemistry, v. 44, n. 6, p. 2361-2371, 2009.